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Motivation

Performance Implementation

Conclusions and Future Work

- In the interest of fast boot times for cloud
computing, features have been bypassed

- Kernel Address Space Randomization
(KASLR), a security feature, is one of the
casualties

- Can features be implemented outside of
the kernel without sacrificing
performance?

- KASLR exhibits low
overhead

- KASLR and FG-KASLR
increase kernel size, so
decompression time
increases

- FG-KASLR has significant
overhead and occurs
during load time

Overall Kernel Boot Benchmarks    

Fine-Grained View of FG-KASLR  (Load Time)

- FG-KASLR time increases
with kernel size

- Kallsyms Fixup is the
majority of overhead due
to sorting, but is
unnecessary for booting to
a shell
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- KASLR can be implemented
in-monitor with little complexity
and overhead, allowing
uncompressed kernels to have this
first line of defense.

- FG-KASLR overhead pushes boot
times well beyond the 150ms
target set by AWS.
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What Is Kernel Address Space 
Randomization (KASLR)?
- Move the kernel to a random location

each time it boots to make it harder for
attackers to find exploitable code

What Is Function Granular KASLR 
(FG-KASLR)?

- Physical and virtual randomization

- Fine-grained approach to KASLR

- Move individual code segments to
random locations, rather than the entire
kernel

- Thousands of random offsets for an
attacker to guess, rather than a single
offset

- Attacker only needs to guess or leak one
offset

Experimental Setup
- Boot time varies with kernel size; chose small/medium/large kernels for data points

Parse Kernel ELF

Handle Relocations
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- Omitted kallsyms fixup
due to large overhead
cost; unnecessary for boot

- FG-KASLR more costly
in-monitor than in the
kernel

- QEMU to boot compressed kernels, track events with perf, a performance analyzing tool included with
the Linux kernel

- Implementations of KASLR and FG-KASLR done in Firecracker, a Virtual Machine Monitor (VMM) written
in the Rust language by Amazon Web Services

In-Monitor vs. Kernel Implementation of 
FG-KASLR
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Load Time

Boot Time

- In-monitor KASLR adds
minimal overhead.

- Straightforward
implementation

- Relocation entries must be
passed to Firecracker

- Medium kernel is AWS
configuration; well under
target boot time

- In-monitor implementations of
bootstrapping processes is the
only way to decouple the bootstrap
loader from the kernel.

- Allows the possibility of loading
kernels into guest memory prior to
boot, avoiding load time overhead
when user requests kernel for
boot.
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Kernel Bootstrap Loader vs. In-Monitor 
Bootstrap Loader Without KASLR
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- Firecracker bootstrap
loader significantly more
overhead than Linux
bootstrap loader due to
protections in Rust not
present in C

Load Time

Small

Medium

Large 




