
Decoupling Kernel Address Space
Randomization From the Linux Kernel

Ben Holmes
Professor Waterman
Computer Science Dept.

Motivation

Performance Implementation

Conclusions and Future Work

- In the interest of fast boot times for cloud
computing, features have been bypassed

- Kernel Address Space Randomization
(KASLR), a security feature, is one of the
casualties

- Can features be implemented outside of
the kernel without sacrificing
performance?

- KASLR exhibits low
overhead

- KASLR and FG-KASLR
increase kernel size, so
decompression time
increases

- FG-KASLR has significant
overhead and occurs
during load time

Overall Kernel Boot Benchmarks

Fine-Grained View of FG-KASLR (Load Time)

- FG-KASLR time increases
with kernel size

- Kallsyms Fixup is the
majority of overhead due
to sorting, but is
unnecessary for booting to
a shell

Small

Medium

Large

nokaslr

kaslr
fg-kaslr

nokaslr

kaslr
fg-kaslr

nokaslr

kaslr
fg-kaslr

Small Medium Large

Ti
m

e
(m

s)
Ti

m
e

(m
s)

- KASLR can be implemented
in-monitor with little complexity
and overhead, allowing
uncompressed kernels to have this
first line of defense.

- FG-KASLR overhead pushes boot
times well beyond the 150ms
target set by AWS.

Decompression Time

Load Time

Boot Time

Parse Kernel ELF

Kallsyms Fixup

Handle Relocations

QR
Code
Here

What Is Kernel Address Space
Randomization (KASLR)?
- Move the kernel to a random location

each time it boots to make it harder for
attackers to find exploitable code

What Is Function Granular KASLR
(FG-KASLR)?

- Physical and virtual randomization

- Fine-grained approach to KASLR

- Move individual code segments to
random locations, rather than the entire
kernel

- Thousands of random offsets for an
attacker to guess, rather than a single
offset

- Attacker only needs to guess or leak one
offset

Experimental Setup
- Boot time varies with kernel size; chose small/medium/large kernels for data points

Parse Kernel ELF

Handle Relocations

Small

Small

Medium

Large

QEMU
FC QEMU

FC QEMU
FC

Ti
m

e
(m

s)

- Omitted kallsyms fixup
due to large overhead
cost; unnecessary for boot

- FG-KASLR more costly
in-monitor than in the
kernel

- QEMU to boot compressed kernels, track events with perf, a performance analyzing tool included with
the Linux kernel

- Implementations of KASLR and FG-KASLR done in Firecracker, a Virtual Machine Monitor (VMM) written
in the Rust language by Amazon Web Services

In-Monitor vs. Kernel Implementation of
FG-KASLR

Small

Medium

Large

Stock
KASLR

Stock
KASLR

Stock
KASLR

In-Monitor KASLR in Firecracker vs. Stock
Firecracker

Ti
m

e
(m

s)

Load Time

Boot Time

- In-monitor KASLR adds
minimal overhead.

- Straightforward
implementation

- Relocation entries must be
passed to Firecracker

- Medium kernel is AWS
configuration; well under
target boot time

- In-monitor implementations of
bootstrapping processes is the
only way to decouple the bootstrap
loader from the kernel.

- Allows the possibility of loading
kernels into guest memory prior to
boot, avoiding load time overhead
when user requests kernel for
boot.

Acknowledgements

Joseph H. and Florence A. Roblee Foundation

Kernel Bootstrap Loader vs. In-Monitor
Bootstrap Loader Without KASLR

Kernel

FC Kernel

FC Kernel

FC

- Firecracker bootstrap
loader significantly more
overhead than Linux
bootstrap loader due to
protections in Rust not
present in C

Load Time

Small

Medium

Large

