
Vassar Col lege | URSI Symposium | 2021

TEMPORAL REASONING ALGORITHMS
J E S S I C A F L E I S C H E R , F R A N C E S C A L U C C H E T T I , M U H T A S I M M I R A Z , B E N J A M I N P R U D ' H O M M E

L U K E H U N S B E R G E R

INTRODUCTION SIMPLE TEMPORAL
NETWORKS

A Simple Temporal Network (STN) has two main
components: a set of real-valued variables called time-
points, and a set of edges imposing constraints on the
distance between pairs of time-points.
These constraints have the form Y−X ≤ δ, where X and Y are
time-points, and δ is a real number.
The Simple Temporal Problem is that of determining if an
STN is consistent - that is, whether there is a set of values for
all time-points that satisfies all edge constraints.
A consistent STN has an n×n matrix D called the distance
matrix.
For each pair of time-points X and Y, the entry D(X,Y) contains
the length of the shortest path from X to Y in the STN graph.

RESULTS
The consistency-checking algorithms for solving the Simple Temporal Problem are displayed in graphs (d) and (e). On both very sparse and dense
networks, a “stop early” version of Bellman-Ford is our fastest algorithm, followed closely by Yen and Randomized Yen, which have similar performances
due to the randomized generation of the networks. A surprising result is that the Bellman-Ford competitor based on the AddToFeasible algorithm performs
better than Bellman-Ford itself on dense networks of around or over 400 time-points. Another surprising result was the performance of Directional Path
Consistency (DPC), which surpassed even Floyd-Warshall's complexity of O(n³). We concluded that this was a consequence of the new edges inserted by
the DPC algorithm into the network. As we cannot predict how many edges DPC will add into a random network, the algorithm may perform better or
worse than expected.
Graph (f) shows a comparison of the performances of Floyd-Warshall's and Johnson's algorithms on very sparse and dense networks. Both of these
algorithms generate distance matrices, with the difference that Johnson works by combining two other algorithms, Dijkstra and Bellman-Ford. We
calculate the complexity of Johnson’s algorithm from the n iterations of Dijkstra within its body: O(n²logn + mn). In sparse graphs where the

CITATIONS
Floyd, 1962; Warshall 1962; Bellman, 1958; Ford & Fulkerson, 1962; Yen, 1970; Johnson, 1977;
Ramalingam et al., 1999; Dechter et al., 1991; Planken, 2013; Chleq, 1995; Cormen et al., 2001

METHODOLOGY

We used Java to code all of the algorithms and a
random STN generator. In order to test our code, we
created benchmarks of random STNs, varying the
number of time-points. For each time-point amount,
we varied the number of edges to be very sparse,
sparse, or dense and whether it is consistent or
inconsistent. We then used the benchmark STNs to test
and compare the timing of the algorithms. In order to
do comparisons, we grouped some of the algorithms
into different groups: consistency checkers, distance
matrix generators, shortest path algorithms, and
solution generators. Many of these groups had some
overlapping algorithms. For example, Bellman-Ford is
a shortest path algorithm, a consistency checker, and a
solution generator. We then used Python to generate
graphs comparing the amount of time that different
algorithms took to run on STNs with different
densities, consistency statuses, and numbers of time-
points.

Temporal networks are data structures for
representing and reasoning about temporal constraints
on real events and activities. The most basic kind of
temporal network is a Simple Temporal Network
(STN) which can accommodate such constraints as
release times, deadlines, precedence constraints, and
duration constraints. The primary goal of this project
was to create a public repository that will include
implementations of several useful algorithms for
manipulating STNs. Researchers interested in using
STNs as a temporal reasoning tool will be able to use
this repository for their needs.

ALGORITHMS
Floyd-Warshall
Generate Solution
DpcDispatch
Bellman-Ford
Bellman-Ford Ext
Dijkstra
Dijkstra Ext
Johnson
Bellman-Ford Ext
Dijkstra
Dijkstra Ext
Johnson
Yen
Randomized Yen
AddToFeasible
AddToFeasible Ext
DPC
Chleq
BFCompetitor

number of edges m is much less than the maximum value n², Johnson’s algorithm should run faster than Floyd-
Warshall's. This is confirmed by our results, which show that Johnson performs worse than Floyd-Warshall on denser
graphs.

