TEMPORAL REASONING ALGORITHMS

JESSICA FLEISCHER, FRANCESCA LUCCHETTI, MUHTASIM MIRAZ, BENJAMIN PRUD’HOMME, LUKE HUNSBERGER

INTRODUCTION

Temporal networks are data structures for representing and reasoning about temporal constraints on real events and activities. The most basic kind of temporal network is a Simple Temporal Network (STN) which can accommodate such constraints as release times, deadlines, precedence constraints, and duration constraints. The primary goal of this project was to create a public repository that will include implementations of several useful algorithms for manipulating STNs. Researchers interested in using STNs as a temporal reasoning tool will be able to use this repository for their needs.

A Simple Temporal Network (STN) has two main components: a set \mathcal{T} of real-valued variables called time-points, and a set \mathcal{C} of edges imposing constraints on the distance between pairs of time-points. These constraints have the form $Y - X \leq \delta$, where X and Y are time-points, and δ is a real number.

The Simple Temporal Problem is that of determining if an STN is consistent - that is, whether there is a set of values for all time-points that satisfies all edge constraints. A consistent STN has an $n \times n$ matrix D called the distance matrix.

For each pair of time-points X and Y, the entry $D(X,Y)$ contains the length of the shortest path from X to Y in the STN graph.

RESULTS

The consistency-checking algorithms for solving the Simple Temporal Problem are displayed in graphs (d) and (e). On both very sparse and dense networks, a “stop early” version of Bellman-Ford is our fastest algorithm, followed closely by Yen and Randomized Yen, which have similar performances due to the randomized generation of the networks. A surprising result is that the Bellman-Ford competitor based on the AddToFeasible algorithm performs better than Bellman-Ford itself on dense networks of around or over 400 time-points. Another surprising result was the performance of Directional Path Consistency (DPC), which surpassed even Floyd-Warshall’s complexity of $O(n^3)$. We concluded that this was a consequence of the new edges inserted by the DPC algorithm into the network. As we cannot predict how many edges DPC will add into a random network, the algorithm may perform better or worse than expected.

Graph (f) shows a comparison of the performances of Floyd-Warshall’s and Johnson’s algorithms on very sparse and dense networks. Both of these algorithms generate distance matrices, with the difference that Johnson works by combining two other algorithms, Dijkstra and Bellman-Ford. We calculate the complexity of Johnson’s algorithm from the n iterations of Dijkstra within its body: $O(n(\log n + mn))$. In sparse graphs where the number of edges m is much less than the maximum value n^2, Johnson’s algorithm should run faster than Floyd-Warshall’s. This is confirmed by our results, which show that Johnson performs worse than Floyd-Warshall on denser graphs.

CITATIONS