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Abstract

In this paper we argue that modelling the cross-country distribution of

per capita income as a mixture distribution provides a natural frame-

work for the detection of convergence clubs. The framework yields tests

for the number of component distributions that are likely to have more

power than “bump hunting” tests and includes a natural method of assess-

ing the cross-component immobility necessary to imply a correspondence

between components and convergence clubs. Applying the mixture ap-

proach to cross-country per capita income data for the period 1960 to

2000 we find evidence of three component densities in each of the nine

years that we examine. We find little cross-component mobility and so

interpret the multiple mixture components as representing convergence

clubs. We document a pronounced tendency for the strength of the bonds

between countries and clubs to increase. We show that the well-known

“hollowing out” of the middle of the distribution is largely attributable to

the increased concentration of the rich countries around their component

means. This increased concentration as well as that of the poor coun-

tries around their component mean produces a rise in polarization in the

distribution over the sample period.
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1 Introduction

There has been a great deal of interest in the shape and evolution of the cross-

country distribution of per capita income in recent years. Much of this interest

arises from the relationship between those characteristics of the distribution

and the neoclassical convergence hypothesis. That hypothesis states that initial

conditions have no implications for long-run outcomes so that all countries will

converge to a common level of GDP per capita regardless of where they be-

gin.1 The alternative hypothesis is that initial conditions do matter in the long

run and that countries with similar initial conditions exhibit similar long-run

outcomes so forming “convergence clubs” – groups of countries that converge

locally but not globally. One possible manifestation of the presence of conver-

gence clubs is multiple modes in the cross-country distribution of per capita

income with each mode corresponding to a convergence club. Multimodality is,

however, not enough to imply the existence of convergence clubs. That requires

immobility within the distribution so that countries in the vicinity of a mode

tend not to move to that of another mode.

Most of research investigating the shape of the cross-country distribution of

per capita income has employed kernel estimation methods. See, for example,

Quah (1996, 1997), Bianchi (1997), Jones (1997), Henderson, Parmeter and Rus-

sell (2007), and others. Bianchi (1997) and Henderson, Parmeter and Russell

(2005) present various tests of the hypothesis of a unimodal distribution against

that of a multimodal distribution. They are able to reject the null in most cases.

Both papers also find little mobility between the modes they identify. Together,

these findings support the existence of convergence clubs. Applications of mix-

ture models, a semi-parametric alternative to the kernel approach, have been

less numerous. The only application to the cross-country distribution of which

we are aware is Paap and van Dijk (1998) although Tsionas (2000) uses mixture

models to study the distribution of per capita output across the US states, while

1Durlauf, Johnson, and Temple (2005) provide a survey of the many guises taken by the
convergence hypothesis and of their myriad empirical implementations.
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Pittau (2005), and Pittau and Zelli (2006) use them to study the distribution

of per capita incomes across EU regions. The findings of Paap and van Dijk are

consistent with those of Bianchi (1997) and Henderson, Parmenter and Russell

(2007).

The mixture approach offers several advantages over the kernel approach

in the current application. Mixture models express the density of a random

variable as the weighted average of a finite number of component densities with

specified functional form. The parameters to be estimated are the number of,

the weights attached to, and the parameters of, the component densities. In the

growth context, multiple components, like multiple modes, can be indicative of

multiple basins of attraction in the dynamic process describing the evolution

of per capita income. Importantly, the mixture approach is able to detect the

presence of multiple components in a distribution even if that multiplicity does

not manifest itself as multimodality. As multimodality is not necessary for

the existence of convergence clubs, used as part of a test of the convergence

hypothesis, the mixture approach can thus provide a test with more power than

the kernel approach. Moreover, the mixture approach provides integrated tests,

such as a likelihood ratio test, for the number of components which represent

improvements over the “bump hunting” methods employed in the kernel based

studies. Indeed, Silverman (1986, p141) cautions that “[it] may be futile to

expect very high power from procedures aimed at such broad hypotheses as

unimodality and multimodality”.

As with the kernel approach, the interpretation of multiple components as

indicative of convergence clubs also requires an analysis of the mobility within

the distribution, which in this case means that between the components. Again

however, this can be accomplished quite naturally within the mixture model

framework, providing another improvement on the relatively ad hoc methods of

mobility analysis employed in the kernel based studies. The estimated mixture

model parameters enable computation of the conditional probabilities that each

entity belongs to each component. These probabilities can be used to assign
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entities to components as well as to gauge the strength of the affinity between the

entity and the components. The propensity of entities to change their assigned

components over time provides a measure of within-distribution mobility.

In this paper we use finite mixture models to investigate the number of

components in the cross country distribution of per capita income over the 1960

to 2000 period. In addition to the improvements over the studies based on kernel

estimation mentioned above, the primary contribution is the improvement in

the methodology over that of Paap and van Dijk (1998) who choose the number

of components to be two a priori based on the bimodality of histograms of

their data. This procedure may not detect all components as components do

not imply modes. Indeed, we find strong evidence of three rather than two

components. The next section of the paper outlines our analytical framework

as well as describing the data that we use. Section 3 presents our results and

the final section offers our conclusions.

2 Analytical Framework and Data

The m-component mixture model specifies the density of a random variable as

f(x,m,Θm,Πm) =
m∑

j=1

πjfj(x,θj) (1)

where fj(x,θj) is a probability density function with parameter vector θj , for

j = 1, . . . ,m, Θm = (θ1,θ2, . . . ,θm) , the πj are the mixing proportions with

πj > 0 for j = 1, . . . ,m,
∑m

j=1 πj = 1, and Πm = (π1, π2, . . . , πm) .

Given m and the functional forms of the component densities, fj(x,θj), the

parameters of the model can be estimated by the method of maximum likeli-

hood. We do so using an iterative fitting by maximum likelihood (ML) via the

expectation-maximization (EM) algorithm (Dempster, Laird and Rubin, 1977).

Each iteration comprises of an expectation step (E-step) followed by a maxi-

mization step (M-step). The EM algorithm seems to be superior to the other

procedures in finding a local maximum of the likelihood function (McLachlan
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and Peel, 2000). We make the usual assumption that the component densities

are normal so that fj(x,θj) = N(x;µj , σ
2
j ), the normal density function with

mean µj and variance σ2
j , for j = 1, . . . ,m. This is not, however, as restrictive

as it may seem because any continuous density can be well approximated by

a mixture of normal densities (Marron and Wand, 1992). Moreover, the nor-

mal distribution is especially easy to interpret in this application as µj is the

mean per capita income in component j and σ2
j measures the within-component

variation in per capita incomes.

We take two approaches to the selection of m, the number of components.

The first is a likelihood ratio test (LRT) of the null hypothesis m = m∗ against

the alternative m = m∗ + 1. For this test, the distribution of the LRT statistic

under the null hypothesis is estimated by bootstrap methods as the conditions

necessary for the LRT statistic to have the usual asymptotic χ2 distribution do

not hold (McLachlan, 1987) 2.

For each m∗, B bootstrap samples are drawn from the mixture distribution

f(x,m∗, Θ̂∗

m, Π̂∗

m) where the parameter values are those estimated using the

original sample. An m∗ component and an m∗ + 1 component mixture model

are estimated for each sample by the method of maximum likelihood and the

usual LRT statistic is computed. The significance level of the sample LRT

statistic is then computed as 1 − r
B+1

where r is number of replications with

an LRT statistic less than the sample LRT statistic. The second approach to

selecting the number of components considers the goodness of fit of the estimated

mixture model by comparison of a kernel estimate of the density of the data

and its expected value under the null hypothesis that the population density is

a mixture of m∗ normal distributions. This comparison is made by computing

the estimated integrated squared error (ISE) statistic

2Other approaches, like the modified LRT, derive a relatively simple asymptotic null distri-
bution of the likelihood ratio test. See, distinctively Ghosh and Sen 1985, and more recently
Chen, Chen and Kalbfleisch, 2004; Chen and Kalbfleisch, 2005. However, the implementation
of such modified LR test does not alter the findings of this section.
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Ĵ =

∫

x


f̂(x) −

m∗∑

j=1

π̂jN(x; µ̂j , σ̂
2
j + h2)




2

dx (2)

where h is the bandwidth used to compute f̂(x), the kernel estimate of f(x),

the true density of x. We select h using the Sheather and Jones (1991) method

and compute f̂(x) as a fixed, rather than adaptive, bandwidth estimate because

of the difficulties in calculating the expected value of the kernel estimate in

the current application (Bowman and Foster, 1993, p.535). While asymptotic

results for the distribution of Ĵ are available, we follow Fan (1995) because

of our small sample size, and we estimate the distribution using a parametric

bootstrap procedure in which the bootstrap samples are drawn from the mixture

distribution f(x,m∗, Θ̂∗

m, Π̂∗

m) where the parameter values are those estimated

using the original sample. The significance level of the sample Ĵ is computed

as 1− r
B+1

where B is the number of bootstrap replications and r is number of

replications with Ĵ ’s less than the sample Ĵ .

We apply both the LRT and ISE tests recursively beginning with the null

hypothesis m∗ = 1, continuing to that of m∗ = 2 if the m∗ = 1 null is rejected,

and so on. We set m equal to the smallest m∗ for which we are unable to reject

the null hypothesis m = m∗. Once m is chosen, the parameter vectors Θm

and Πm can be estimated enabling study of the properties of the m component

densities. The πj can be interpreted as the unconditional probability that Xi,

observation i, is a draw from component j. The conditional probability of that

event is given by

ζji =
πjfj(Xi,θj)∑m

j=1 πjfj(Xi,θj)
(3)

These probabilities can be used to assign observations to components by

assigning observation i to that component with the largest estimated ζji, com-

puted using equation (3) with the πj and the θj replaced by their estimates.

Given a panel of data, mobility can be studied by noting the propensity of the
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assignment of entity i to change over time. The strength of the affinity between

entity i and the components can be gauged.

The per capita income data used is real GDP per worker (RGDPWOK) from

the Penn World Table (PWT) Version 6.1 (Heston, Summers, and Aten, 2002).

As Durlauf, Johnson and Temple (2005) argue, GDP per worker accords more

closely than GDP per capita with the dependent variable of interest in most

growth models.3 The sample consists of data on the 102 countries–all of those

for which data is available for the entire 1960 to 1995 period. Following Durlauf,

Johnson and Temple (2005) we exclude the middle-eastern oil producing coun-

tries and Luxemburg. For the year 2000 data we use data from 1998 for 98

of the 102 countries with that for the remaining four being extrapolated from

the 1997 data.4 The alternative, using the countries for which actual 2000 data

is available, would reduce our dataset to 89 countries. We estimate a mixture

model for each of the nine years 1960, 1965, . . ., 2000. The variable used in our

analysis is RGDPWOK relative to its workforce-weighted average over the 102

countries in the sample. Using the PWT 6.1 mnemonics, the workforce for each

country, in each year, was computed as POP*RGDPCH/RGDPWOK.

3 Results

3.1 Number of Components

Table 1 reports the LRT statistics and and the corresponding bootstrapped p-

values for testing the null hypothesis of m = m∗ components versus m = m∗+1

in the mixture model for m∗ ranging from 1 to 4. In each year the value of the

LRT statistic implies rejection, at conventional significance levels, of the null

hypotheses m = 1 and m = 2 but not that of m = 3. Moreover there is no

tendency for the selected number of components to fall over time as would be

3The number of workers “... is usually a census definition based of economically active
population”. (Data Appendix to PWT 6.1 dated 10/18/02 p. 11)

4As the data for each year are analyzed independently, any errors caused by this extrapo-
lation will be confined to the 2000 data.

7



Table 1: The choice of the number of components according to the likelihood
ratio test.

m∗=1 m∗=2 m∗=3 m∗=4
year LRT p-value LRT p-value LRT p-value LRT p-value

1960 64.18 0.000 24.21 0.042 3.80 0.736 0.01 1.000
1965 56.14 0.000 34.91 0.026 3.33 0.804 0.00 0.998
1970 59.93 0.000 28.20 0.036 5.35 0.574 1.00 0.978
1975 51.89 0.000 37.52 0.022 3.72 0.642 0.01 1.000
1980 62.53 0.000 20.87 0.048 0.51 0.978 0.00 1.000
1985 47.06 0.002 35.08 0.028 2.17 0.932 0.00 1.000
1990 55.18 0.000 45.28 0.024 9.12 0.206 3.03 0.942
1995 64.47 0.000 45.17 0.020 10.17 0.192 0.58 0.992
2000 61.74 0.000 46.15 0.016 11.22 0.154 2.91 0.978

suggested by a tendency for the LRT statistics for the m = 2 null hypothesis

to fall. To the contrary, if there is any tendency at all for the selected number

of components to change, it is for a rise as evinced by the rise in the LRT

statistics for the m = 3 null hypothesis although we are never able to reject this

hypothesis.

Similarly, Table 2 presents the results of the statistical testing procedure

using the goodness of fit test (ISE). These results are entirely consistent with

those from the LRT procedure lending support to the conclusion that a mixture

of three normal densities offers the preferred description of the cross-country

distribution of output per worker.

The finding of three (or, more generally, more than one) mixture components

is not enough to imply the existence of multiple convergence clubs in the cross

country distribution of per capita income. That requires an additional analysis

of the mobility of the basins of attraction which we undertake in Section 3.3

after a discussion of the evolution of the components over the sample period.

3.2 Evolution of Distribution and its Components

The estimation of the previous section produces estimates of the mean µj and

variance σ2
j of per capita GDP for each of the three components which we label
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Table 2: The choice of the number of components according to the goodness of
fit test.

m∗=1 m∗=2 m∗=3 m∗=4

year Ĵ p-value Ĵ p-value Ĵ p-value Ĵ p-value

1960 10.76 0.000 2.11 0.000 0.21 0.736 0.04 0.960
1965 10.80 0.000 3.34 0.000 0.22 0.776 0.09 0.812
1970 10.61 0.000 1.19 0.006 0.38 0.365 0.11 0.713
1975 10.22 0.000 3.10 0.000 0.23 0.642 0.04 0.850
1980 9.28 0.000 2.23 0.000 0.06 0.954 0.05 0.849
1985 9.09 0.000 2.83 0.001 0.42 0.156 0.33 0.057
1990 11.58 0.000 3.55 0.000 0.50 0.192 0.17 0.579
1995 11.32 0.000 3.62 0.000 0.47 0.219 0.13 0.678
2000 11.51 0.000 2.42 0.000 0.48 0.112 0.14 0.673

The estimated ISE, Ĵ , is multiplied by 100

“poor”, “middle”, and “rich” according to the estimated means with µ̂poor <

µ̂middle < µ̂rich.

Figure 1 plots the means against time (the solid lines) along with dashed

lines that indicate the intervals containing 80% of the probability mass of each

component. That is, the dashed lines are µ̂poor±1.282× σ̂poor, µ̂middle±1.282×

σ̂middle and µ̂rich ± 1.282× σ̂rich where σ̂j is the estimated standard deviation of

component j for j =“poor”, “middle”,“rich”.

As Figure 1 shows, over the sample period the mean of the poor compo-

nent, µ̂poor, fell steadily so that, in 2000, it was about half of its 1960 value.

Although because the 1960 value is so low – about 30% of the sample mean –

this fall is small in absolute terms. The estimated means of the middle and rich

components are slightly more volatile than that of the poor component with

µ̂rich having an upward trend over the sample period while µ̂middle finishes the

sample period slightly below where it began. The gap between the rich and

poor components, measured as µ̂rich− µ̂poor, increases by about 14% over the

sample period while µ̂rich − µ̂middle increases by about 17%.

There also are important changes in the dispersion of the contries around

the component means, especially in the case of the rich component. Over the
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Figure 1: Groups’ means over time.
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sample period the estimated standard deviation for this component, σ̂rich, falls

by almost 50% with about half of the fall occurring between 1970 and 1975 and

a further quarter occurring between 1985 and 1990. This is shown in Figure 1

by the narrowing of the interval containing 80% of the mass of this component

to 60% of its 1960 value in 1975 and subsequently to 50% of its 1960 value in

1990.

This phenomenon, and the relative stability of the estimated standard devia-

tion of the middle component, which rises by about 30% over the sample period,

combine to open a region of low probability mass between the middle and rich

components. This is evident in the successive panels of Figure 2 as the deepen-

ing of the antimode at a value of relative output per worker of about two. This

figure shows the estimated kernel and mixture densities for GDP per worker in

each year as well as the constituents of the estimated mixture distribution i.e.,
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the π̂jfj(x, θ̂j) for j =“poor”, “middle”,“rich”5. As panels (a), (b), (c) and (d)

in Figure 2 show, the antimode is evident in 1960 and it remains substantially

unchanged until 1975 when it becomes much deeper. Panels (e), (f) and (g)

show that after 1975 the antimode was again substantially unchanged through

1980 and 1985 until it again become much deeper in 1990.

While the gap between the rich component and the middle component means

does rise – by about 17% – over the sample period, the dominant cause of the

observed “hollowing out” of the middle of the cross country distribution of out-

put per worker seems to be the decrease in the within-component variation in

the rich component. As this decrease could reflect, in part at least, compo-

sitional changes, we have more to say about it in Section 3.4 below after we

discuss mobility across the components.

The variance of the poor component falls by almost 60%. As Figure 2 shows,

the net effect of this and the smaller rise in the variance of the middle component

is the appearance in 1965 of an antimode at a value of relative output per worker

of about 2
3
. This antimode persists at various depths throughout the remainder

of the sample period but is never very deep compared to the mode immediately

to its right (at a value of relative output per worker slightly above unity). The

importance of this phenomenon in the evolution of the distribution is much

smaller that of the antimode discussed above – the magnitude of the former,

both absolutely and relative to the modes on either side, is much smaller than

that of the latter.

Our findings here are consistent with, for example, those of Beaudry, Collard

and Green (2005) who document increases in the 15-85 and smaller percentile

ranges of the cross-country distribution of output per worker along with reduc-

tions in the 10-90 and larger percentile ranges between 1960 and 1998. They

provide evidence that these changes began in the mid 1970’s. Our statistical

5These are the same densities used to compute the Ĵ statistics discussed above. The

π̂jfj(x, θ̂j) are not individually labeled due to space considerations but there ought

not be any resultant ambiguity as π̂middlefmiddle(x, θ̂middle) lies always to the right of

π̂poorfpoor(x, θ̂poor) and so on.
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Figure 2: Kernel density estimation and the three-components mixture model fit over the period 1960–2000.
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(d) 1975
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(h) 1995

0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Relative GDP per worker

D
en

si
ty

Kernel
Constituent
Mixture

(i) 2000

12



explanation of their findings is a tightening of the component distributions at

either extreme of the cross-country distribution of output per worker at that

time which reduced the mass in the center of the distribution as well as in the

tails.

More generally, in Section 3.5 we explain the often-discussed increase in the

polarization of the cross-country distribution of output per worker since 1960

by an increase in the concentration of the poor and rich countries around their

component means rather than by an increase in the gap between the means

themselves.

3.3 Mobility between Components

As described above, we assign countries to components according to their max-

imal estimated conditional probability of belonging to each component. The

ζ̂ji for each country, each component and each year are given in Appendix B.

Given these assignments, we are able to observe the implied transitions between

components that occur when assignments change. Given that the link between

multimodality and the existence of convergence clubs is tenuous, this seems to

be a more natural definition of a “transition” than the crossing from one side of

an antimode to another (as used by, for example, Bianchi, 1997, and Henderson,

Parmeter and Russell, 2007). Moreover, it is not generally true that, if there

is one, the antimode in a mixture distribution occurs at the point where the

conditional probabilities of belonging to the two components are equal. That

is, crossing from one side of the antimode to another need not imply a change

in the component with the maximal conditional probability.

So defined, transitions are relatively rare events during our sample period

and a small number of countries account for most of them so that immobility

rather than mobility is the norm. Of the 714 possible transitions only 51, or

about 7%, occur. Excepting the flurry of transitions in the mid-1980’s, the

transition rate is roughly constant over the sample period. Sixty-four of the 102

countries in our sample remain assigned to the same component throughout the
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sample period.6 Of those that do transition from their initial component, 28

transition just once so that the remaining 10 countries account for over 40% of

the observed transitions.

Of the countries that never leave their initial component, 18 are among the

26 initially rich countries while the other 8 initially rich countries (Argentina,

Chile, Costa Rica, Mexico, South Africa, Trinidad and Tobago, Uruguay and

Venezuela) move to the middle component where, with the exception of Ar-

gentina which returns to the rich component in 2000, they all remain until

2000.

A further 24 of the countries that remain attached to the same component

over the entire sample period are among the 40 countries initially classified as

belonging to the middle component. Of the 16 countries that transition from

the middle component during the sample period, 3 countries (Angola, Central

African Republic, Senegal) move to the poor component, 9 countries (Cyprus,

Greece, Hong Kong, Japan, Korea, Mauritius, Portugal, Singapore and Taiwan)

move to the rich component, 2 countries (Cameroon and Guinea) return to it

after spending the 1970’s and 1980’s in the poor component, and 2 countries

(Iran and Peru) return to it after visiting the rich component in 1970.

The remaining 22 of the countries that stay attached to the same component

over the entire sample period are among the 36 initially poor countries. Of the

14 contries that leave the poor component, 12 (Bangladesh, Botswana, China,

Republic of the Congo, Cote d’Ivorie, India, Indonesia, Pakistan, Romania, Ski

Lanka, Thailand, and Zimbabwe) move to the middle component and remain

there until the end of the sample period while 2 (Mauritania and Zambia) return

to the poor component.

6They are Australia, Austria, Belgium, Canada, Denmark, Finland, France, Ireland, Is-
rael, Italy, The Netherlands, New Zealand, Norway, Spain, Sweden, Switzerland, The United
Kingdom and The United States (all initially in the rich group); Bolivia, Brazil, Columbia,
The Dominican Republic, Ecuador, Egypt, El Salvador, Fiji, Gabon, Guatemala, Guyana,
Honduras, Jamaica, Jordan, Malaysia, Morocco, Namibia, Nicaragua, Panama, Papua New
Guinea, Paraguay, Philippines, Syria, and Turkey (all initially in the middle group); and,
Benin, Burkina Faso, Burundi, Chad, The Democratic Republic of the Congo, Ethiopia, The
Gambia, Ghana, Guinea-Bissau, Kenya, Lesotho, Madagascar, Malawi, Mali, Mozambique,
Nepal, Niger, Nigeria, Rwanda, Tanzania, Togo, and Uganda (all initially in the poor group).
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In sum, we conclude that the cross-component mobility during our sample

period was low with transitions between components being relatively rare. While

the transition rates that we find are low, they are somewhat higher than those

documented in other studies such as Bianchi (1997) who finds that 3 of 238

(1.2%) possible transitions occur, Paap and van Dijk (1998) who find that 21

of 720 (2.9%) possible transitions occur, and Henderson, Parmeter and Russell

(2007) who find that 12 of 291 (4.1%) and 19 of 414 (4.6%) possible transitions

occur in the two per capita output datasets that they employ.7 Our higher

estimated transition rate is explained, in part at least, by our greater number

of putative convergence clubs. Each of the studies cited above identifies two

putative clubs whereas we find three so that we have twice as many between-

club boundaries and hence twice as many points where a transition can occur.

We would thus expect to observe a higher frequency of transitions given any

degree of mobility within the distribution. Nonetheless, we conclude that the

mobility between the components of the cross country distribution of per capita

income is low.

In addition to allocating the countries among the components, the estimated

conditional probabilities can be used to measure the strength of the affinity be-

tween countries and components. Higher probabilities indicate tighter bonds so

we measure the overall tightness of the bonds between countries and compo-

nents by counting the number of countries with a ζ̂ji greater than a threshold,

τ , for any j. Figure 3 plots the number of countries with a ζ̂ji > τ for any j

for various values of τ from .6 to .9. The first feature evident in Figure 3 is the

general strength of the bonding between countries and components. In 1960,

for example, about 2
3

of the countries have a ζ̂ji > .9 for some j and over 90%

have a ζ̂ji > .7. The second, and arguably more important, feature displayed in

Figure 3 is the evident increase in the strength of the affinity between countries

and components over the sample period as shown by the general tendency for

7Henderson, Parmeter and Russell (2007) follow Bianchi (1997) and defines transitions as
movements across the antimode between the two modes that they identify while Paap and
van Dijk (1998) do as we do and count changes in component assignments based on maximal
estimated conditional probabilities.
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the lines in Figure 3 to rise over time. For example, in 1960, 74% of the coun-

tries had a maximal conditional probability greater than .85 whereas in 2000,

89%, were bound this tightly to a component. The tendency for the number

of countries with a ζ̂ji > τ to rise between 1960 and 1998 holds for all values

of τ although it is necessarily less pronounced for lower values. In sum, we

conclude that most countries are bound very tightly to a component and that

the tightness of the bonds has increased over time.

Figure 3: Percentage of countries allocated for different values of the threshold.
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Our finding of low cross-component mobility leads us to interpret the multi-

ple mixture components identified in Section 3.1 as representing multiple basins

of attraction in the stochastic process describing the evolution of output per

worker. That is, we regard that process as characterized by convergence clubs

so that a country’s initial level of output per worker plays an important role in

determining its long-run level. Moreover, the role of initial conditions seems to

be strengthening as the affinity of countries for clubs became stronger during the
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period that we have studied. It is important to note at this point that our re-

sults are subject to a version of the identification caveat discussed in Durlauf and

Johnson (1995). As there, the behavior that we have documented is compatible

with a model in which there are multiple steady states, or convergence clubs,

as we have emphasized, as well as with a model in which countries transition

though different stages of development before reaching a common (stochastic)

steady state. In common with all of the empirical growth literature, differen-

tiation between these two alternatives is hampered by the time span of our

dataset.

3.4 Behavior within Components

Having discussed the mobility within the distribution we return now to the issue

of the role of compositional changes in the reduction of the variance of the rich

component over the sample period. Recall that this reduction occurs mainly in

two steps viz., the fall between 1970 and 1975 and that between 1985 and 1990.

While the latter is due in some part to the movement of Argentina, Mexico,

South Africa, Trinidad and Tobago, and Venezuela out of the group, the role of

such compositional changes in the former is small, as it is in the total reduction

in the variance of the rich component over the sample period. To show this we

consider the variation in output per worker across the 18 countries that remain

assigned to the rich component throughout the sample period. Figure 6 plots

the standard deviation of output per worker across this “always rich” group

as well as that for rich component. Over the sample period the former fell by

almost 2
3

with about 75% of the decline occurring before 1975. By contrast, the

estimated standard deviation of the rich component falls by about 50% over the

sample period. This implies that the observed tendency for the rich component

to become increasingly separated from the other two components is not due

to compositional effects but rather to forces within the group causing the rich

countries to become increasingly concentrated around the group mean. That is,

the rich component did not become more concentrated around it’s mean simply
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because some countries relatively far from the mean left the group. Instead,

the rich countries tended to move closer to each other and in doing so increased

their separation from the other countries in the world.

Figures 4 and 5 show analogous information for the poor and middle com-

ponents respectively. As with the rich component, in both of these cases the

behavior of the standard deviations of the group of countries always assigned to

each component mirrors that of the corresponding estimated component stan-

dard deviation. Figure 4 shows that, as with the estimated standard deviation

of the poor component, with exception of the late 1970’s, the standard devia-

tion of output per worker in the 22 “always-poor” countries fell steadily from

1960 to 2000. As with the rich component, the poor component did not become

more concentrated around it’s mean simply because some countries relatively

far from the mean left the group. Rather, the poor countries tended to move

closer to each other and in doing so also increased their separation from the

other countries in the world. Figure 5 shows that both the estimated standard

deviation of the middle component and the standard deviation of the income

per capita across the 24 “always middle” countries both exhibit a slight upward

trend over the 1960 to 2000 period.
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Figure 4: Standard deviation of the poor group.
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Figure 5: Standard deviation of the middle group.
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Figure 6: Standard deviation of the rich group.
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3.5 Evolution of Inequality and Polarization

The evolution of the cross-country distribution of per capita income that we

document above has implications for the degrees of inequality and polarization

of the distribution. One way to formalize these implications is to compute

the polarization measure proposed by Duclos, Esteban and Ray (2004). For a

population with income distribution described by the density f(x) this measure

is

Pα(f) =

∫ ∫
f(x)1+αf(y)|y − x|dydx (4)

were α ∈ [.25, 1] is a parameter that indexes the identification effect in the

identification-alienation framework used by the authors. As they point out,

P0(f) is twice the Gini coefficient although this value of α lies below the lower

bound of .25 implied by their axioms. Table 3 shows estimates of Pα(f) for
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α = 0, .25, .5, .75, 1, computed with f(x) replaced by the estimated 3-component

mixture model of the cross-country distribution of per capita income for each

of our sample years between 1960 and 2000. These measures indicate that, over

this period, the inequality in the distribution, as measured by (twice) the Gini

coefficient, P0(f), has fluctuated some, rising in the late 1960’s and then falling

in the early 1990’s to finish the period virtually unchanged. In other words, at

least as measured by the Gini coefficient, measured inequality in 2000 was about

the same as it was in 1960. In contrast, for each value of α ≥ .25 that we use,

measured polarization rises over this period. Both the absolute and proportional

rises are increasing in α and, with the exception of the late 1970’s and the late

1990’s, these rises are monotonic. As we show below, this rise is driven by the

tightening of the rich and poor component distributions around their respective

means. The decreased dispersion within these distributions tends to increase

within-club “identification” and so measured polarization because of the weight

given to this effect in measuring polarization.

To study the statistical causes of the rise in polarization we compute P ∗

α(f)

which is a version of the computed Pα(f) with the component means held fixed

at their estimated 1960 values. Comparison of P ∗

α(f) and Pα(f) thus enables us

to gauge the role of the changing component means in the rise in polarization.

As noted in section 3.2, the gap between the rich and poor component means

widens over that sample period – a phenomenon that would tend to increase

inequality and polarization. We also compute P σ
α (f) which is a version of the

computed Pα(f) with both the component means and the mixing proportions

held fixed at their estimated 1960 values. Changes in P σ
α (f) thus reflect only the

effects of the changes in the component standard deviations and comparison of

P σ
α (f) and P ∗

α(f) isolates the effects of changes in the mixing weights. As noted

in section 3.2, the standard deviations of the rich and poor components have

fallen substantially over the sample period while that of the middle component

has risen somewhat – phenomena that together would have ambiguous effects

on polarization and inequality. Both P ∗

α(f) and P σ
α (f) are shown alongside
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Pα(f) in Table 3 for each value of α and for each year.

In the case of the inequality measures, P ∗

0 (f) fluctuates less than P0(f) and

not always in the same direction – in both 1975 and 1990, P0(f) rises while

P ∗

0 (f) falls sharply. These two years saw large rises in µ̂rich which increased

the gaps between it and µ̂poor and µ̂middle by about 12% in each case – the

largest changes in these gaps that we observe. This suggests that the changes

component means can be an important source of the variation in inequality.

However, despite the rises in both µ̂rich− µ̂poor and µ̂rich− µ̂middle over the

entire sample period noted in Section 3.2, measured inequality is virtually the

same at the end of the period as at the beginning.

Moreover, in 2000, P σ
0 (f) is slightly greater than both P σ

0 (f) in 1960 and

P0(f) in 2000 showing that the net effect of the changes in the component

standard deviations is also to (slightly) increase inequality. The reason that

the rise in inequality is much less than the increased gaps between µ̂rich and

µ̂poor and µ̂middle alone would imply is the offset provided by the changes in

the estimated mixing proportions, the π̂j . While π̂rich is relatively constant at

about .27 throughout the sample period, the behavior of π̂middle resembles a step

function with a jump from about 0.4 to about 0.5 between 1980 and 1985, while

π̂poor exhibits a corresponding fall from around .33 to .23. This large shift in

mass towards the middle component dramatically reduces measured inequality.

For each value of α ≥ 0, the behavior of P ∗

α(f) in most years is very similar

to that of Pα(f) indicating that the net effect of the changes in the component

means on measured polarization is small. This similarity tends to increase with

α in that the differences between P ∗

α(f) and Pα(f) decline as α rises.

As higher values of α increase the weight given to within-club “identification”

this implies that it is increases in that aspect of the polarization measure that

is a work here – a claim that is consistent with the differences in the behaviors

of the inequality and polarization measures.

The computed P σ
α (f) measures rise steadily through the sample period. Un-

til 1980, they track the corresponding Pα(f)and P ∗

α(f) measures very closely
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implying that changes in the σ̂j are primarily responsible for the rise in polar-

ization from 1960 to 1980. After 1980, however the paths of P σ
α (f) and the

other two polarization measures diverge with P σ
α (f) rising more quickly than

the others. The magnitude of this divergence increases with α. The divergence

between P σ
α (f) and P ∗

α(f) implies that, while changes in the σ̂j remain an im-

portant factor in the rise in polarization after 1980, some offset is provided here

by the changes in the estimated mixing proportions detailed above. The large

shift in mass towards the middle component tends to reduce polarization and

opens the gap between P σ
α (f) and P ∗

α(f) evident from 1985 onwards.

In sum, while inequality in the cross-country definition of per capita income,

as measured by the Gini coefficient, is about the same in 2000 as it was in 1960,

albeit after some fluctuations, the polarization in the distribution, at least as

measured by Pα(f), rises steadily from 1960 to 2000. The primary proximate

cause of this rise is the narrowing of the rich and poor component distributions.

As the countries in the convergence clubs represented by those components

become more concentrated around their respective club means they become

more like each other and less like the countries in other convergence clubs. This

increases cross-country polarization in the overall distribution
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Table 3: Inequality and polarization measures.

α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1

Pα P ∗

α P σ
α Pα P ∗

α P σ
α Pα P ∗

α P σ
α Pα P ∗

α P σ
α Pα P ∗

α P σ
α

1960 1.09 1.09 1.09 0.79 0.79 0.79 0.61 0.61 0.61 0.50 0.50 0.50 0.43 0.43 0.43

1965 1.12 1.09 1.12 0.82 0.80 0.82 0.64 0.63 0.64 0.54 0.53 0.54 0.47 0.47 0.48

1970 1.15 1.16 1.13 0.84 0.85 0.83 0.66 0.67 0.65 0.56 0.56 0.54 0.49 0.50 0.47

1975 1.17 1.06 1.13 0.87 0.80 0.85 0.69 0.64 0.68 0.58 0.54 0.58 0.51 0.49 0.52

1980 1.14 1.11 1.12 0.85 0.83 0.83 0.67 0.66 0.65 0.55 0.55 0.54 0.48 0.48 0.46

1985 1.12 1.09 1.17 0.83 0.82 0.87 0.66 0.65 0.73 0.55 0.55 0.65 0.49 0.48 0.62

1990 1.15 1.04 1.13 0.87 0.79 0.89 0.71 0.65 0.77 0.62 0.57 0.73 0.58 0.54 0.74

1995 1.11 1.05 1.12 0.86 0.82 0.90 0.72 0.69 0.81 0.65 0.63 0.80 0.63 0.61 0.84

2000 1.11 1.10 1.13 0.84 0.85 0.90 0.70 0.71 0.80 0.63 0.64 0.78 0.61 0.61 0.82

Note: Pα denotes the Duclos, Esteban and Ray index of polarization for a range of values

of the parameter α. Pα for α = 0 is equivalent to twice the Gini index of inequality. P ∗
α

measures the polarization with the component means held fixed at the estimated 1960

values. P σ
α measures the polarization with the component means and mixing proportions

held fixed at the estimated 1960 values.

4 Conclusions

We have argued that, despite the attention that it has received in the liter-

ature, multimodality of the cross-country distribution of per capita output is

neither necessary nor sufficient for the presence of multiple basins of attraction,

or convergence clubs, in the dynamic process describing the evolution of that

distribution over time. Kernel estimation methods and the associated “bump

hunting” approaches to the detection of multi pile modes are thus likely to

be less informative, when investigating the convergence hypothesis, than ap-

proaches which model the distribution as a mixture of component densities.

Each of these densities represents a putative convergence club and the mixture

approach provides integrated tests for number of components. As tests of the

convergence hypothesis, these tests have greater power than multimodality tests

because the multiple components may not reveal themselves as multiple modes.

Moreover, the estimated ex post probabilities that a country belongs to each
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of the components provides a natural metric for for assigning countries to com-

ponents and, more generally, for measuring the strength of the affinity between

countries and components. Comparison of such assignments over time provides

a natural framework for the assessment of mobility between components which

is important as low mobility is an essential part of convergence club view. Even

if multiple components are detected, high mobility between them would be con-

trary to the claim that they represented multiple basis of attraction.

We implement the mixture approach using cross-country per capita income

data for the period 1960 to 2000. In contrast to the commonly held view that

the cross-country distribution of per capita income exhibits two modes, both of

the statistical tests that we use indicate the presence of three component den-

sities in each of the nine years that we examine over this period. For each year

we thus estimate a 3-component mixture model and label the components as

“poor”, “middle”, and “rich”. We find that, while the gap between the mean rel-

ative per capita incomes of the rich and poor group has widened somewhat, the

evident “hollowing out” of the middle of the distribution is largely attributable

to the increased concentration of the rich and poor countries around their re-

spective component means. This explanation is robust to the compositional

changes brought by the few transitions out of these two groups that do occur.

We track those transitions by using the estimated ex post probabilities of com-

ponent membership to assign each country to a component in each year. While

transitions do occur they are rare with only about 7% of the possible transitions

actually occurring. Of the 102 countries in our sample, 64 remain assigned to

the same component throughout the sample period and 28 transition just once,

so that the remaining 10 countries account for over 40% of the observed tran-

sitions. This finding of low cross-component mobility leads us to interpret the

multiple mixture components that we detect as representing convergence clubs.

There is a pronounced tendency for the maximal ex post probability for each

country to increase indicating a strengthening of the affinity of countries for the

club in which they lie. Finally, we use our estimated mixture densities to com-
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pute measures of polarization and find that they have increased over the sample

period - a phenomenon that we attribute primarily to the decreased variances

of the poor and rich components.
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