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Abstract

This paper merges patent citation data with data on pharmaceutical patent expirations,

generic entry, and pricing to explore the effects of observable patent characteristics on off-

patent and on-patnet pharmaceutical pricing. Using a sample of drug patents facing generic

entry in the 1990s, I find that the price of branded drugs increased on average in the face of

generic entry. Importantly, I find that the number of patent citations that a drug receives

from other firms is correlated with a decrease in markup and a decrease in the duration of

the markup. Conversely, self-citations are correlated with higher prices and slower decay

in prices. The results indicate that patent citations may signal the degree of inter-molecule

substitution. And, importantly, self-citations may indicate a degree of cumulative patenting

that enables a firm to effectively extend or strengthen the original patent protection. This

research takes a step forward in understanding the distinction between “positive” citations

and “negative” citations related to creative destruction.

JEL: K11, L11, L65.
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1 Introduction

In recent years the use of patent citations has proliferated in the economic literature. Patent

citations are widely used in examining patent value, firm value, innovative performance, and

strategic behavior. Part of the interest in citations is due to the recent availability of patent

citation data from the National Bureau of Economic Research (NBER), detailed in Hall,

Jaffe and Trajtenberg (2001). That project was undertaken because of a recognition that

simple patent counts are noisy measures of innovative output (Trajtenberg 1990).

One of the common interpretations of patent citations is that they are an indica-

tor of patent value or patent quality. Indeed, several papers have shown that citation-

weighted patent counts are a better measure of innovative output than straight patent

counts (Hagedoorn and Cloodt 2003, Schankerman 1998, Lanjouw and Schankerman 1999).

However, another interpretation of patent citations is that they indicate knowledge

flows and spillovers (see Jaffe, Trajtenberg and Henderson (1993) and recent contributions

by Moretti (2004) and Hussler (2004) among others). The knowledge flow interpretation

indicates that downstream patents may build on work by upstream patents so that inno-

vation is cumulative (Scotchmer 1991). As such, citations may not always measure the

current quality or value of the cited patent, but rather the rise of a supplanting technology,

as suggested by Schumpeter’s creative destruction.

This paper merges data on patent citations with data on pharmaceutical entry and

pricing in order to distinguish the value-enhancing and substitution effects signaled by

citations. The paper investigates the usefulness of patent statistics as a way to measure

inter-molecule substitution and intra-molecule protection by drug pioneers. The results

have application outside of pharmaceuticals by demonstrating that the interpretation patent

citations must be handled with care. Additionally, this paper adds to the body of work

showing strategic patenting behavior on the part of innovators (Podolny, Stuart and Hannan

1996, Grindley and Teece 1997, Hall and Ziedonis 2001).

Previous pharmaceutical studies have paid great attention to the protection afforded by

patents. Pharmaceutical products are undoubtedly fertile markets in which to investigate

the effect of patent protection by comparing on-patent and off-patent pricing. Unlike mar-

kets like electronics, patented pharmaceutical products are fairly well-defined, and generic

entry is relatively easy to measure. Despite being the very basis of market power in phar-
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maceuticals, little attention has been paid to the observable characteristics of the patents

themselves. Part of the reason is certainly the data requirements: to examine the effects

of expiring patents, one must include in the sample patents granted 20 years prior. Rich

patent data are available only since the mid-1970s. Thus, until recently, it was not feasible

to examine detailed patent statistics in combination with post-patent pricing and entry.

Several papers have examined the effect of generic entry on pioneer drug pricing after

patent protection expires. The empirical results indicate that pioneer prices may either

rise or fall in the face of generic competition. For instance, both Grabowski and Vernon

(1992) and Frank and Salkever (1997) find that branded prices increase after generic entry.

In contrast, Caves, Whinston and Hurwitz (1991) and Wiggins and Maness (1994) find a

negative impact of generic competition on branded price. The accepted explanation for

branded price increases lies in market segmentation: when faced with generic competition,

pioneers may either compete against the generics for price sensitive consumers, or they

may forego the price sensitive segment of the market in favor of selling to brand-loyalists.

Thus, depending on the strategy that the pioneer firm employs, we can expect to see

prices either decrease or increase. In reality, many pioneer firms begin manufacturing and

selling their own generic versions of the drug in order to price discriminate based on brand

loyalty. In any case, while pioneer prices may rise or fall when faced with generic entry, a

price premium is generally enjoyed by the pioneer. observe a negative price response. The

accepted theoretical explanation for price increases is that branded drug manufacturers may

practice price discrimination after patent expiration: rather than focus on price-sensitive

consumers, they restrict their sales to brand loyal consumers. Indeed, many manufacturers

produce their own generic versions of their drugs after generic entry–competing on price

with generics, and reserving the brand name product for brand loyalists. In any case,

whether prices increase or decrease in response to generic entry the branded drug enjoys a

price premium over generics, and pioneer profits decrease.

I examine on- and off-patent pricing using a sample of drugs facing generic entry in

the 1990s. The paper provides two primary contributions to the existing literature on

pharmaceutical entry. First, I exploit the observable characteristics of the patents that were

the basis of monopoly power and brand recognition for the drugs in my sample. Second, I

explore the dynamics drug pricing using a hazard specification.

I find that the price of branded drugs in my sample increased on average in the face of
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generic entry. Additionally, I find that the number of patent citations that a drug receives

from other firms is correlated with a decrease in markup, and a decrease in the duration of

the markup. Conversely, the number of patent citations that a manufacturer makes to its

own drug patent (“self-citations”) is correlated with higher prices and slower decay in prices.

The results imply that forward citations by other firms signal the degree of inter-molecule

substitution, and self-citations correspond to the degree a pioneer is able to further protect

its original substance by “fencing” the patent in with follow-on patents. The follow-on

patents generally cover new forms of the substance (e.g., oral versus injectible forms or

extended release capsules), but may also include new processes that enable cheaper produc-

tion of the substance. Thus follow-on patenting softens the blow of the patent expiration on

the molecule. This research takes an important step in understanding strategic cumulative

patenting, as well as understanding the distinct differences between forward citations and

self-citations.

In the following section, I present the econometric specification. Next, I describe the

pharmaceutical data and patent data in my sample. Section (4) presents the results of the

estimations, and Section (5) concludes and discusses possible extensions.

2 Specification

My specification utilizes a simple product differentiation framework in order to estimate a

relationship between branded drug price and generic entry and substitution. From the first

order conditions for profit maximization for a given drug at a particular time, we get the

Lerner equation

L =
s

ε
, (1)

where L = p−c
p is the Lerner index, p and c are the price and marginal cost, respectively,

s is the market share relative to generic production, and ε is the molecule-specific demand

elasticity. In the case of pharmaceuticals, the pioneer manufacturer generally has some

brand name recognition that differentiates it from generic competitors, even after patent

expiration.

I assume an inverse demand function of p = p(q + θg) where q is the quantity of the

branded drug, g is the quantity of the generic competitor, and θ represents the degree of

substitutability between branded and generic drugs. I also allow for conjectural variations,
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so that dg
dq = λ. In this case, the Lerner equation becomes

Lit =
(1 + θitλit)

εit
. (2)

To develop an econometric specification for drug i at time t, I take logs and add an error

term uit:

lnLit = ln(1 + θitλit) + ln εit + uit. (3)

The first term on the right hand side of Equation (3) measures the degree of substitutability

with generic manufacturers, or intra-molecule competition. And the second term repre-

sents factors that influence the firm-specific elasticity of the drug, including the availability

of therapeutic substitutes (substitute pharmaceutical compounds–inter-molecule competi-

tion). My estimation equation is a linear approximation,

lnLit = β0 + β1Xit + β2Zit + uit, (4)

where Xit is a matrix of explanatory variables influencing intra-molecule competition, Zit is

a matrix of explanatory variables influencing inter-molecule competition. Xit and Zit vary

somewhat across specifications in Section (4), but the primary variables are discussed here.

For intra-molecule competition, the most important explanatory variable is the number

of generic entrants since patent expiration. As discussed below, I do not have direct obser-

vations on the number of generic competitors or market shares. Instead I use the number

of generic applications (Amended New Drug Applications–ANDAs) at the Food and Drug

Administration. Generic producers are required to submit an ANDA prior to generic man-

ufacture. I treat the cumulative total as a proxy for the degree of potential entry. To the

extent that entry is credible, the number of potential entrants may be a better measure of

competitiveness than observed entry.

For inter-molecule competition, the most important explanatory variable is the number

of forward citations received by the patent, discussed in more detail below. I classify forward

citations into two types: self-citations and citations by others. Self-citations are calculated

from the patent data by multiplying the cumulative forward citation count by the propor-

tion of self-citations. Other citations are the residual. I hypothesize that the number of

citations by others (and the technological closeness of those citations) indicates the number

of potential inter-molecule substitutes, which should increase the molecule specific demand

elasticity, εit.
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In calculating the Lerner index, it is necesary to approximate marginal cost. In my

sample, I approximate marginal cost for each branded drug by using the lowest observed

generic price for the drug. The absence of any real cost data is a limitation, but if generics

are competitive and if manufacturing processes are similar, then the lowest observed generic

price during the sample period should well approximate marginal cost. While it might be

expected that the costs of production will change over the life cycle of the drug, it is unlikely

that they will change significantly in the neighborhood of the patent expiration; little R&D

goes into improving productivity for drugs that are nearing expiration.

3 Data

3.1 Drug Sample

My sample of drugs comprises a subset of the drugs found in the Generic Spectra database

from IMS Health. Generic Spectra is a database of over 100 drugs facing patent expiration

and generic entry between 1992 and 2002. The Generic Spectra drugs are listed in Table

(1), along with the availability of entry, price, and patent data. I obtained branded drug

names, molecule names, and patent expiration dates from these data. Patent protection

on pharmaceuticals can vary, and can be supplemented by “exclusivity” granted by special

legislation, e.g., the Drug Price Competition and Patent Term Restoration Act (DPCPTR).

The period of exclusivity may or may not outlast patent protection. The Generic Spectra

expiration dates are intended to indicate the earliest date at which generics may enter the

market.

The patents for the Generic Spectra drugs were obtained from the IMS Patent Focus

database. I was able to identify a patent number for 68 pioneer drugs. It should be noted

that a drug may be covered by multiple patents; so, for the purposes of obtaining patent

statistics, I chose the earliest of issued patents. The earliest patent is usually the patent

on the molecule that defines the drug. Later patents are frequently sought on such things

as drug delivery or form. The usual practice is for subsequent patents on a drug to cite

back to the primary molecule patent. An expired drug may allow for generic competition in

its original form; however, the pioneer firm may patent an extended release version which

would not immediately be subject to generic competition.

Generic Spectra includes only drugs that experienced some generic entry. These are
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usually drugs with larger markets. Throughout, my results are conditional on some amount

of entry. So, my results on entry relate to the intensity or frequency of entry, not the

likelihood of entry. However, to the extent that the economically important drugs are those

that face generic entry, the restriction is not significant.

Table (2) describes the variables used in the study, including some summary statistics.

3.2 Entry

Data on entry were obtained from the FDA’s Orange Book. Each generic entrant for a given

chemical compound must file an ANDA with the FDA. Filing an ANDA is a necessary but

not sufficient condition for entry. In reality the number of entrants represents potential

entry, and will differ from actual entry because I do not observe whether the firm actually

produces or whether it produces and then exits. But, as mentioned above, to the extent

that entry is easy for a generic manufacturer, it may be that potential entry is a better

measure of competitive pressure than observed entry.

3.3 Prices

Prices for the drugs in the sample were obtained from the ReadyPrice database from

Thomson-Micromedex. The prices listed in this product are Average Wholesale Prices

(AWP), which do not reflect any discounts off the list price. Discounts are common in whole-

sale pharmaceutical markets, so that AWP is referred to as “ain’t what’s paid.” However,

as other researchers have noted, as long as AWP is correlated with the actual discounted

price, the qualitative results in my estimation should not be influenced by the use of this

proxy (Lu and Comanor 1998). AWP prices are used because they are much more readily

available; revenue and quantity data are expensive to obtain from private data vendors.

Unfortunately, the pricing data are far from complete. The pricing history is not rich for

most drugs, and for many drugs I could not find pricing data for either the pioneer, generics,

or both. For simplicity, I restricted pricing data to drugs sold in tablet and capsule form.

This restriction eliminated a few drugs, but enabled me to more easily calculate comparable

prices based on per unit weight. Because I do not have data on the quantity sold in different

forms, some simplification was necessary.

On a given day, A manufacturer may set different prices based on form, dosage, and

package size. Where multiple prices exist on a given day, I calculate a simple average unit

6



price1 and a minimum unit price observed on that day.

To calculate a Lerner index, I approximate marginal cost using the minimum price

observed by a generic entrant over the sample period. Thus, I implicitly assume that

marginal cost remains the same over the time period. Again, this assumption is reasonable

if we restrict ourselves to the latter part of a patent’s life. The earliest price data in the

sample come from seven years prior to expiration, and the latest prices are 10 years after

expiration.

3.4 Patent statistics

Patent statistics were obtained from the NBER Patent Citations Data Files (described in

Hall et al. (2001)).

Of primary importance for the current paper are the citation variables. So-called “for-

ward citations” are citations received by the patent from subsequent patents. Forward

citations are frequently associated with higher patent value. The rationale is that if a

patent is frequently cited, then it may be the basis for cumulative innovation, and may

be technologically important. However, higher forward citations may also have a negative

impact on value if citations reflect replacement by new technologies.

In the pharmaceutical context, it is likely that both effects occur. More citations will oc-

cur for blockbuster drugs, and they will also occur in crowded therapeutic classes. However,

with regard to pricing in particular, I posit that more citations by other firms in nearby

technological classes reflect the degree of substitutes that exist for this drug. If we define

blockbuster drugs by the size of the market, then we can expect more citations to reflect

larger revenues. But, this does not imply that the Lerner index will necessarily be higher.

To determine the effect on price, it is useful to distinguish between forward citations by

others, and self-citations. The NBER dataset defines two self-citation variables, reflecting

the proportion of forward citations that are made to the patent by the same patent holder.

Since information about the patent holder of citing patents is subject to error, the two self-

citation variables represent the upper and lower bounds (Hall et al. 2001). Missing values

for the self-citation variables will obtain whenever there are no forward citations. In the

estimation, I use the lower bound estimate, and replace missing lower bound values with

1Obviously, if one had revenues, one would prefer to calculate a weighted average rather than a simple

average.
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zero in the event of zero citations.

I use the proportion of self-citations to impute the quantity of self-citations. Self-

citations represent investment by a firm in a patented line of drugs or related drugs. These

citations indicate either an active effort to protect patent coverage (and thus make substi-

tution harder), or they indicate a response by the firm to strong patent protection. That

is, the causality is not clear a priori, but in either case, self-citations are correlated with

more freedom from inter-molecule competition. Similarly, the quantity of other-citations

indicates that other firms are citing the patent, and potentially providing substitute drugs

or treatments. Both self-citations and other-citations are tracked dynamically. That is, I

track when each citation is made, and keep a cumulative total based on date.

By way of example, Table (3) lists all the patent citations made to patent number

4,267,320, which protected the branded drug Ceftin (cefuroxime axetil) manufactured by

Glaxo. One can observe that the first several patent citations are self-citations covering new

forms of the drug. Glaxo continually introduced new forms (e.g., a solid oral form of the

drug rather than the original injectible) and finally a process patent. Sumitomo’s citation

represents a new chemical that may operate as a therapeutic equivalent to cefuroxime axetil.

Notably, there is a gap in citations that resumes when the patent expires. After expiration,

one can see a flurry of process patents related to manufacturing for the generic producer

Ranbaxy.

Backwards citations, or citations made by the patent to prior patents may also indicate

more substitutes in the therapeutic class. In this case, the citations might not be negative

in that the new drug may usurp the cited drug. So, this substitution effect is likely to be

smaller. Self-citation data are not available easily available for backwards citations.

Hall et al. (2001) describe the creation of two indices in the NBER data using patent

citations: generality and originality (Jaffe et al. 1993). The NBER indices are useful for

several reasons. First, they are convenient and available. Additionally–and because of

this–they are being used more frequently in empirical research, so they serve as a useful

benchmark.

The generality index for patent i is defined as

1−
niX
j

s2ij

where sij refers to the proportion of citations to patent i from patents in technology class j.
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Thus, the higher the index, the more spread out are the patents that cite it, technologically

speaking (Hall et al. 2001). Low generality should be bad news for a branded drug, as it

will indicate citations from a more “focused” technology class, making it more likely that

it is receiving citations from closer substitutes.

Originality is similarly defined, except that sij refers to backwards citations (citations

made by the patent in question) rather than forwards citations (citations received by the

patent in question). Higher originality indicates more diffuse backward citations technology

classes, implying (perhaps) that a wider array of technologies were utilized in the innovation.

Both generality and originality are undefined if the number of citations is zero. In my

sample, undefined values are replaced by zero. In the case of generality this redefinition is

justifiable in that an uncited patent is not applicable to any patented technologies (yet), and

therefore receives a low score for generality.2 In the case of originality, one could imagine

that highly original patents might cite no previous patents. However, from an empirical

standpoint, Hall et al. (2001) observe that higher numbers of citations tend to be associated

with higher originality and generality indices; thus, assigning zero to undefined values seems

the logical choice.

4 Estimation

In the following subsections, I estimate different versions of Equation (4). In Section (4.1) I

estimate ordinary least squares estimates of the price equation, and test for endogeneity. In

Section (4.2) I attempt to control for endogeneity using instrumental variables and simul-

taneous equations methods. Lastly, in Section (4.3), I estimate a hazard rate specification

of the likelihood of branded price decreases.3

4.1 Price equations

Table (4) shows the results of estimating Equation (4) using ordinary least squares. The

dependent variable is the log of the Lerner index. In columns (1) to (4), the branded price

used to calculate the Lerner index is the minimum branded price on any given date (L); in

the last specification the average price is used (Lavg).

2Alternatively, the patent may just be very young.
3For the sake of parsimony, I will focus my remarks on the primary variables of interest: price, entry, and

forward citations.
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The first noticeable result is that entry is positively correlated with markups. There

are two potential explanations for this result. First, if firms are attempting to segment

the market by brand loyalty–as discussed in Section (1)–then we would expect to see

price respond positively to entry. However, another possible explanation is endogeneity.

If high prices induce entry, then the positive relationship may result from the bias of a

simultaneously determined system. I will examine endogeneity below.

Throughout all the estimated OLS equations, the log of the number of forward citations

(plus one) by “others” enters significantly. In columns (1) and (2) of Table (4), ln(subfor)

is positive, and in columns (3) to (5)–when dummies for the therapeutic categories have

been added–the sign becomes negative and significant at the 1% level. The negative sign is

evidence that on average forward citations by others represent potential substitute products,

since greater substitution will lead to lower prices. For this reason I refer to citations by

others as subfor or “substitute” forward citations.

The sign on the log of the number of self-citations (plus one)–ln(selfor)–is positive

throughout, and significant at the 1% level when the category dummies are included. The

positive coefficient is consistent with the interpretation of self-citations as representing bar-

riers to (substitute) entry, as discussed in Section (3).

Lastly, generality has a significant positive impact on the markup when the categorical

dummies are included. A more general patent indicates that forward citations come from

a wide array of technology classes. If citations tend to be focused from only one class, it

is more likely that these citations are from the same technological class as the drug itself,

representing greater substitutability. Thus, higher generality (less focus) should indicate

less substitution, and a higher price. In fact, the coefficients on ln(subfor) and generality

must be interpreted together: ln(subfor) represents the amount of (potentially) substi-

tute citations, and generality represents the intensity (or lack of intensity) in a particular

technological class.

Because of possible endogeneity between prices and entry, the OLS coefficients cannot be

relied upon. A Durbin—Wu—Hausman test (described in Davidson and MacKinnon (1993))

reveals the presence of endogeneity in the OLS estimates. I regress ln(entrants) on the log

of time since patent expiration (ln(t)), patent characteristics, and the categorical dummies.

The residual from that regression is included in a price equation (column(3) of Table(4)) to

test for endogeneity. The coefficient on the residual is significant at the 5% level, indicating
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endogeneity of entry. I employ two approaches to control for the problem: instrumental

variables and simultaneous equations.

4.2 Endogeneity

Table (5) shows the results of the instrumental variables approach, when I instrument with

ln(t). I treat the time since expiration as the identification variable because it is more likely

that some entry (generic and substitute) occurs over time, and that the increased entry

impacts price. However, it is unlikely that the passage of time impacts price in a distinct

way.4

The four columns of Table (5) represent specifications using both ln(L) and ln(Lavg)

as dependent variables. Columns (2) and (4) include category dummies.

Entry fails to be significant in any estimation, but the coefficients on ln(subfor), ln(selfor),

and generality continue to be highly significant when category dummies are included. The

signs remain the same as in the OLS specification.

Table (6) shows the results of two simultaneous equations models. Again, I use both

ln(L) and ln(Lavg) as measures of the markup; these are dependent variables in the price

equations and independent variables in the entry equations. The price equations (columns

(1) and (3)) are identified by ln(subfor) and ln(selfor). The entry equations are identified

by ln(t) and offpat (an indicator variable equal to one when the drug is off-patent).

In the price equations, the signs and significance remain the same as in the OLS spec-

ifications. That is, entry again enters positively, and the signs on ln(subfor), ln(selfor),

and generality continue to be negative, positive, and positive, respectively. In the entry

equation, the markup has a positive impact on entry, which is what we should expect,

theoretically. Unreported estimates using the generic markup as an additional explanatory

variable in the entry equation do not alter the coefficients on the citation variables. The

results of the simultaneous equations models support other studies that find a positive price

response to entry.

In summary, I find my hypotheses confirmed. In particular:

• Self-citations tend to increase the branded markup.
4Clearly it can be argued that drug-specific demand elasticity will be larger over time. However, this

substitution is likely to take place over the 10 to 15 year that the drug is on-patent. The elasticity in the

post-patent timeframe is likely to be fairly constant.
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• Forward citations by others tend to decrease the branded markup.

• Entry is met by an increase, on average, of the branded markup.

• Generality (less intense technological focus of forward citations) tends to increase the
markup.

Besides the size of the markup, it is interesting to investigate the dynamics of the

branded response to generics. To examine the duration of the markup following entry, I

utilize a duration model.

4.3 Duration

I begin the duration–or hazard rate–analysis by specifying a reduced form model for

the probability of a decrease in the branded price. The hazard function, λ(t), gives the

probability that the pioneer firm will decrease its price given that it has not decreased its

price in the previous t years. The hazard function is defined as λ (t) = f(t)
1−F (t) , where f(t)

and F (t) are the usual density and cumulative probability functions.

The exponential specification assumes a constant hazard: λ(t) = λ, so that the hazard

function does not vary with the duration of the spell. That is, there is no duration depen-

dence; the length of time a firm has gone without lowering price does not, ceteris paribus,

affect the likelihood of a price decrease in the next interval of time. The hazard rate is

constant in t if the corresponding distribution is exponential.

The Weibull distribution leads to a hazard function of the form λ(t) = λp(λt)p−1. This

hazard function includes the exponential as a special case where p = 1, therefore it is useful

to include it as a comparison. For values of p < 1, the hazard function will be decreasing

in time (it will exhibit negative duration dependence). For p > 1, the hazard function will

exhibit positive duration dependence. For both the exponential and Weibull models, the

parameter λ is modeled as

λ = eXβ+ε (5)

where X is a matrix of drug and patent characteristics given in Table (2). Some of the

covariates vary over time: notably the current number of entrants, and the number of

substitute citations and self-citations.
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Estimation involves maximum likelihood estimation where the censored observations are

incorporated into the log-likelihood function much like the Tobit model (Greene 1993):

X
uncensored

λ (t|θ) +
X
all

ln (1− F (t|θ)) (6)

Table (7) show the results of the hazard estimation for six specifications. The coefficients

are presented in their exponentiated forms (eβ) so that a value above one indicates a pos-

itive marginal effect, and a value below one indicates a negative marginal effect. Columns

(1) to (3) assume an exponential distribution, and columns (4) to (6) assume a Weibull

distribution. For each specification I use three samples: all available time periods, the

on-patent subsample, and the off-patent subsample. For the on-patent subsamples, generic

entry cannot be used as an explanatory variable.

All specifications show the same impact of the relevant explanatory variables. The

impact of forward citation variables are consistent with those found in the price equations

in Sections (4.1) and (4.2). The impact of entry is more ambiguous.

The primary findings are:

• More entry and more substitute citations increase the likelihood that prices will fall.

• More self-citations and higher generality decrease the likelihood that prices will fall.

• The impact of substitute citations and generality is much stronger in the on-patent
sample than in the off-patent sample.

Regarding entry, it may seem odd that it would lead to higher price markups and faster

price decreases. In an unreported estimation, I perform the same analysis on price increases

and find that more entry also leads to an increase in the likelihood that prices will increase.

The explanation is that some drugs will decrease price in the face of generic competition,

and some drugs will increase price;5 regardless of which strategy the firm follows, it will

follow it faster if there is more entry.

The information regarding forward citations fills out the picture of the substitution

story. More substitute citations and lower generality will lead to lower prices and speedier

price decreases, while more self-citations will lead to higher prices and a lower likelihood of

price decreases. The interpretation of substitute citations and self-citations as relating to

5On average prices increase–as found in Sections (4.1) and (4.2). But, there is heterogeneity in response.
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inter -molecule substitution more than intra-molecule substitution is bolstered by the fact

that the coefficients are much more extreme in the on-patent sample (where there is no

generic competition) than in the off-patent sample.

A final interesting result is that the scaling parameter in the Weibull specifications

indicates that there is positive duration dependence. That is, the longer an off-patent drug

goes without lowering price, the less likely that it is to lower price in the future.

5 Conclusion

The results presented above are important for the pharmaceutical literature because they

suggest that citations made to the pioneer drug patent by other firms may be related to

the degree that other products (molecules) compete with the drug. The effects of the

generality index also seems to indicate that more focused forward citations are correlated

with the existence of closer substitutes. Similarly, self-citations may indicate barriers to

entry (or at least strong patent protection), and lead to higher prices. I also find that

pioneer drug prices tend to increase when faced with generic entry, supporting the market

segmentation theories of other researchers. Using hazard rate analysis, I show that price

decreases by pioneer firms exhibit negative duration dependence.

Additionally, the results are important for the patent literature. Researchers have long

been aware that patent citations are a way to measure patent quality or value. However, they

are equally aware that citations may represent a negative impact relative to self-citations

in the form of supplanting technology. Schumpeter’s creative destruction, in fact, relies on

patent citations being a negative indicator, at least on some level. This paper is the first to

my knowledge to distinguish empirically between negative citations and positive citations.

The pharmaceutical industry offers a unique opportunity to study citation, because it is

easier to distinguish positive from negative citations, due to the nature of the technology

and the nature of competition.

Lastly, the methodology emphasizes the usefulness of citation data outside of their usual

applications. They are widely available and cheap. So, to the extent that they proxy well for

different competitive phenomena–like entry and strategic investment–they can be utilized

as proxies in many contexts.

One caution should be noted in interpreting the results. First, while the interpretation

14



of the coefficient estimates is consistent with a substitution story, there is more information

available in the citation data to exploit. Detailed coding of citations, the technologies

involved (compound claims, composition claims, method-of-use claims, and process claims),

and tracking specifically who cites whom (and why) is a fruitful area for ongoing research.

Extensions in better exploiting patent data should prove profitable and this paper takes

a step in bridging the gap between the empirical patent literature and the pharmaceutical

pricing literature. Patent statistics are a potentially valuable–and largely unexploited–

resource for investigating pricing and competition.
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6 Tables

Table 1: List of sample drugs
Category Pioneer Drug Molecule Patent data Generic prices Branded prices Entry data All
analgesics dolobid diflusinal x x x

stadol butorphanol tart x x
toradol ketorolac x x x x x
ultram tramadol x x

anesthetics amidate etomidate x
forane isoflurane x x
sufenta sufentanil x

antiarthritics ansaid flurbiprofen x x x x x
daypro oxaprozin x x x
lodine etodolac x x x x x
naprosyn naproxen x x x x x
orudis ketoprofen x x x x x
relafen nabumetone x x x x x
voltaren diclofenac sodium x x

antibiotics/anti-infectives amikin amikacin x x
ceclor cefaclor x x x x x
ceftin cefuroxime axetil x x x x x
mefoxin cefoxitin x
zinacef cefuroxime x x

antidepressants anafranil clomipramine x x
aventyl nortriptyline x x x
luvox fluvoxamine x x x
prozac fluoxetine x x x x x
vivactil protriptyline x
wellbutrin bupropion x x x x x

antifungal lotrimin clotrimazole x
nizoral ketoconazole x x x x x

antimalarial plaquenil hydroxycholoroquine x x x
antivirals flumadine rimantadine x x x

zovirax acyclovir x x x x x
bile therapy actigall ursodiol x x x
cancer blenoxane bleomycin x

eulexin flutamide x x x x x
hydrea hydroxyurea x x x
mutamycin mitomycin x
nolvadex tamoxifen x x x
taxol paclitaxel x
vepesid etoposide x

cardiovascular betapace sotalol HCL x x x
bumex bumetanide x x x x x
capoten captopril x x x x x
capozide captopril x
cardene nicardipine x x x
cardizem diltiazem x
cardura doxazosin mesylate x x x x x
corgard nadolol x x x x x
dobutrex dobutamine x x
hytrin terazosin x x x x x
lopid gemfibrozil x x x x x
lopressor metoprolol x x
lozol indapamide x x x
mevacor lovastatin x x x x x
mexitil mexiletine x x x x x
primacor milrinone x x
prinivil lisinopril x x x x x
procardia nifedipine x x
questran cholestyramine x
rythmol propafenone HCL x x x
sectral acebutolol x x x x x
tambocor flecainide x x x x x
tenex guanfacine x x x x x
tenoretic atenolol/chlorthalidone x x x
vasotec enalapril maleate x x x x x
visken pindolol x x
wytensin guanabenz x x
zebeta bisoprolol x x x x x
ziac bisoprolol x x x x x
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Category Pioneer Drug Molecule Patent data Generic prices Branded prices Entry data All
dermatological temovate clobetasol propionate x x
diabetes glucophage metformin x x

glucotrol glipzide x x x x x
gastrointestinal axid nizatidine x x x x x

carafate sucralfate x x x
pepcid famotidine x x x x x
prilosec omeprazole x x
tagamet cimetidine x x x x x
zantac ranitidine x x x

hemotological coumadin warfarin sodium x x x
trental pentoxifylire x

inmunological imuran azathioprine x x x
neoral cyclosporine x x x

musculoskeletal aredia pamidronic acid x x
tracrium atracurium besilate x x
zanaflex tizanidine x x x

neurological eldepryl selegiline x x x x x
klonopin clonazepam x
parlodel bromocriptine x x x x x
permax pergolide x x x
sinemet carbidope/levodopa x x
zarontin ethosuximide x

ob/gyn estrace estradiol x x x
ogen estropipate x x x

opthalmics betagan levobunolol x x
betoptic betaxolol x x
neptazane methazolamide x x
propine dipivefrine x x

psychotherapeutics buspar buspirone x x x
clozaril clozapine x x x
cylert pemotine x
versed midazolam HCL x x
xanax alprazolam x x

respiratory atrovent ipratropium x x
intal cromolyn x x
seldane terfenadine x

sedatives halcion triazolam x x
prosom estazolam x x

tuberculosis rifadin rifampin x x x

Counts 68 67 53 102 35
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Table 2: Variables used in estimation
Prices and entry Obs Mean Std. Dev.

pbmin The minimum brand price on a given date. 504 2.09 1.40
pbavg The average brand price on a given date. 504 2.28 1.57
pbdown Indicator variable = 1 if there is a branded price decrease.
pgmin The minimum generic price on a given date. 1235 1.33 0.89
pgavg The average generic price on a given date. 1235 1.52 1.00
cost The minimum of any generic price ever facing the pioneer drug. 3006 0.66 0.70
L Branded Lerner index: (pbmin - cost)/cmin. 503 0.60 0.29
Lavg Branded Lerner index: (pbavg - cost)/cmin. 503 0.63 0.26
entrants Cumulative number of generic applicants. 3829 4.37 6.02

Patents
subfor Cumulative number of forward citations made by other firms. 3304 34.22 38.51
selfor Cumulative number of forward citations made by own firm. 3304 3.71 8.77
general NBER "Generality" index. Undefined values set to 0 3304 0.53 0.16
original NBER "Originality" index. Undefined values set to 0 3304 0.19 0.29
cmade Number of citations made by the patent. 1982 2.95 2.18
offpat Indicator variable = 1 when the patent has expired.

Other
cat dummy variables for pharmaceutical category
t time since patent grant

Table 3: Citations to patent 4,267,320 (Ceftin/Glaxo)
Citing Patent Patent Assignee Form Process Chemical

4385054 Glaxo X
4446317 Glaxo X
4562181 Glaxo X
4602012 Glaxo X
4705784 Sumitomo X
4820833 Glaxo X
4897270 Glaxo X
4994567 Glaxo X
6060599 Ranbaxy X
6323193 Ranbaxy X
6346530 Ranbaxy X
6384213 Ranbaxy X
6485744 Individual X
6534494 Ranbaxy X
6833452 Ranbaxy X
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Table 4: Ordinary least squares estimation

ln(entrants) 0.238 *** 0.247 *** 0.181 *** 0.195 *** 0.184 ***
(0.030) (0.031) (0.026) (0.027) (0.024)

ln(subfor) 0.050 ** 0.048 ** -0.196 *** -0.196 *** -0.169 ***
(0.023) (0.023) (0.028) (0.028) (0.025)

ln(selfor) 0.003 0.003 0.106 *** 0.107 *** 0.082 ***
(0.026) (0.026) (0.025) (0.025) (0.023)

generality -0.001 -0.008 1.224 *** 1.179 *** 1.004 ***
(0.167) (0.167) (0.172) (0.173) (0.155)

cmade -0.033 ** -0.036 ** -0.055 *** -0.058 *** -0.054 ***
(0.016) (0.016) (0.015) (0.015) (0.013)

originality 0.608 *** 0.624 *** -0.186 -0.159 -0.067
(0.141) (0.141) (0.160) (0.160) (0.143)

ln(t) -0.136 -0.222 -0.164
(0.112) (0.110) (0.098)

Constant -1.222 *** 0.001 -0.976 *** 1.091 0.607
(0.106) (1.018) (0.224) (1.046) (0.937)

Category dummies N N Y Y Y
Observations 358 358 358 358 360
Adjusted R-squared 0.27 0.27 0.58 0.58 0.59

Standard errors in parentheses
* significant at 10%; ** significant at 5%; *** significant at 1%

(5)
ln(Lavg)

(3)
ln(L)

(4)
ln(L)

(1)
ln(L)

(2)
ln(L)

Table 5: Instrumental variables estimation

ln(entrants) 0.091 -0.012 0.140 0.031
(0.129) (0.107) (0.113) (0.094)

ln(subfor) 0.086 ** -0.181 *** 0.066 * -0.157 ***
(0.039) (0.031) (0.034) (0.027)

ln(selfor) 0.032 0.178 *** 0.007 0.135 ***
(0.037) (0.048) (0.032) (0.042)

generality 0.081 1.380 *** 0.062 1.152 ***
(0.187) (0.204) (0.161) (0.178)

cmade -0.045 ** -0.066 *** -0.038 ** -0.060 ***
(0.019) (0.017) (0.017) (0.015)

originality 0.631 *** -0.262 0.585 *** -0.143
(0.147) (0.177) (0.127) (0.155)

Constant -1.081 *** 0.006 -1.036 *** -0.095
(0.163) (0.328) (0.142) (0.286)

Category dummies N Y N Y
Observations 358 358 360 360
R-squared 0.23 0.54 0.28 0.56

Standard errors in parentheses
* significant at 10%; ** significant at 5%; *** significant at 1%
ln(entrants) instrumented using ln(t)

lnLlnL lnLavglnLavg
(3) (4)(1) (2)
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Table 6: Simultaneous equations estimation

(1) (2) (3) (4)
ln(Lerner) ln(entrants) ln(Lerner) ln(entrants)

ln(entrants) 0.182*** 0.188***
(0.036) (0.032)

ln(Lerner) 0.340* 0.420**
(0.175) (0.211)

ln(subfor) -0.165*** -0.134***
(0.027) (0.024)

ln(selfor) 0.130*** 0.105***
(0.026) (0.023)

generality 1.150*** 0.389 0.941*** 0.359
(0.168) (0.283) (0.151) (0.284)

cmade -0.049*** -0.073*** -0.044*** -0.072***
(0.014) (0.025) (0.013) (0.026)

originality -0.224 0.574** -0.128 0.556**
(0.156) (0.237) (0.139) (0.245)

lnt -0.097 -0.106
(0.182) (0.179)

offpat 1.794*** 1.757***
(0.148) (0.157)

Constant -0.326 0.000 -0.390 1.239
(0.271) 0.000 (0.242) (1.619)

Category dummies Y Y Y Y
Observations 358 358 360 360

Standard errors in parentheses
* significant at 10%; ** significant at 5%; *** significant at 1%

Lerner = L Lerner = Lavg

Table 7: Hazard rate estimation

(1) (2) (3) (4) (5) (6)
All On-patent Off-patent All On-patent Off-patent

ln(entrants) 3.244*** 2.811*** 1.439*** 2.113***
(0.322) (0.494) (0.194) (0.420)

ln(subfor) 1.898*** 19.852*** 1.454*** 1.997*** 3.789** 1.645***
(0.186) (12.083) (0.173) (0.213) (2.274) (0.207)

ln(selfor) 0.827* 0.328*** 0.814* 0.754** 0.226* 0.778*
(0.085) (0.138) (0.098) (0.087) (0.180) (0.102)

generality 0.015*** 0.000*** 0.049*** 0.012*** 0.002** 0.024***
(0.010) (0.000) (0.039) (0.008) (0.004) (0.020)

cmade 1.143** 1.619*** 1.081 1.146** 1.277 1.121
(0.071) (0.288) (0.078) (0.072) (0.204) (0.086)

originality 5.633** 107.233* 4.745* 11.190*** 34.609* 6.557**
(4.206) (283.254) (3.877) (8.891) (70.794) (5.769)

Category dummies Y Y Y Y Y Y
Scaling parameter 6.819*** 9.867*** 5.415***

0.87 2.07 1.22
Observations 2576 1277 1299 2576 1277 1299

Standard errors in parentheses
* significant at 10%; ** significant at 5%; *** significant at 1%

Exponential distribution Weibull distribution
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