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1 Introduction

I present below a model for pricing closed-end mutual funds that incorpo-

rates investor expectations about whether fund managers will, through their

portfolio management skills, beat the market. I first demonstrate that the

model successfully explains many features of closed-end fund pricing, includ-

ing the average level of discounts and why 56% of the cross-sectional variance

in discounts can be explained by two fundamental factors, management fees

and the dividend payout rate. Given that the model accurately captures

closed-end fund behavior, I use market data to generate a time-series of in-

vestor sentiment about the ability of fund managers to beat the market. This

time series varies positively with capital flows into actively managed mutual

funds but negatively with capital flows into passively managed index funds.

This suggests that investor beliefs about the ability of management to beat

the market affect investor capital allocation across a wide class of investment

vehicles. When sentiment about the ability of managers to beat the mar-

ket improves, investors move capital from passively managed portfolios into

actively managed portfolios, and vice versa.

The model presented below builds upon the work of Lee, Shleifer & Thaler

(1990), who argue that “investor sentiment” about anticipated returns is

responsible for the time variation observed in discounts on closed-end funds,

which are mutual funds whose shares trade like common stock. Because

supply and demand determine their prices, closed-end fund shares can be—
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and often are—priced by the market at large discounts or premia to the

value of their underlying portfolios. It is argued by Lee, Shleifer & Thaler

(1991) that this violation of arbitrage pricing results from time variation

about anticipated returns on the part of investors. As they grow more or

less positive about future returns, investors bid up or down the prices of

closed-end fund shares, thereby causing discounts/premia to vary. Because

changes in perceptions about returns affect all funds simultaneously, changing

investor sentiment also provides a good explanation for the high correlation

found among fund discount movements.

This paper builds upon the investor sentiment model by arguing that

what matters for investor portfolio allocation decisions is not so much investor

expectations about absolute returns as about relative returns. That is, what

matters to investors is not simply how high a rate of return a fund will

generate but by how much the fund will beat or trail the market. I refer to this

as differential sentiment because portfolio allocation decisions are affected by

the expected differential in returns between the market and mutual funds.

Adding differential sentiment to a model of closed-end fund pricing helps

to explain closed-end fund behavior. However, if differential sentiment exists,

it should be expected to affect investors portfolio allocation decision in all

cases where investors might worry about the ability of fund managers to

beat the market. That is, if investors care about the ability of closed-end

fund managers to beat the market, they should also care about the ability of

managers of other types of investment vehicles to beat the market. To that
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end, this paper examines capital flows into both open-end mutual funds and

index funds. If sentiment is indeed market wide, then we should expect to

find that a measure of sentiment derived from closed-end funds is positively

correlated with capital flows into open-end funds but negatively correlated

with capital flows into index funds. Because closed-end funds and open-end

funds are both actively managed investment vehicles, an improvement in

differential sentiment should cause investors to want to invest more of their

money in both kinds of mutual fund. On the other hand, the improvement in

differential sentiment will cause investors to take money out of index funds.

This is because investors who truly believe that managers are now more likely

to beat the market will withdraw capital from index funds—whose returns

are tied to the market—in order to reallocate their portfolios towards actively

managed investment vehicles.

It is demonstrated below that these two correlations predicted by the dif-

ferential sentiment hypothesis are not only found in the data, but are found

to be economically and statistically significant as well. Investor beliefs about

managerial ability appear to drive portfolio allocation decisions. Further-

more, the negative correlation with respect to index fund capital flows serves

to empirically distinguish differential sentiment from investor sentiment. If

investors were moved solely by investor sentiment—i.e. expectations about

future absolute returns rather than relative returns—then one would expect

them to place more capital into all investment vehicles when sentiment im-

proved. Instead, the negative correlation with respect to index funds suggests
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that what is crucial is differential sentiment about whether active manage-

ment can beat passive management.

Section 2 presents the differential sentiment model and shows that it nests

rational expectations as a special case. Section 3 argues that because rational

expectations fails to explain closed-end discounts, one must invoke differen-

tial sentiment. Section 4 uses the model to quantify differential sentiment.

Section 5 demonstrates that differential sentiment varies positively with cap-

ital flows into open-end mutual funds but negatively with capital flows into

exchange-traded index funds. Section 6 concludes.

2 The Differential Sentiment Model

An examination of all closed-end stock funds trading on the NYSE from

1960 to 1999 reveals that one cannot reject the hypothesis that closed-end

funds die off in a Bernoulli fashion, with an annual death probability of

γ = .0364.1 That is, if a fund is in business on January 1st, it has a 3.64%

chance of going out of business by the end of the year and a 1− γ = 96.36%

chance of continuing in business into the next year.2 The fundamental value

of a closed-end fund is traditionally measured by its Net Asset Value (NAV),

the difference between fund assets and liabilities. We will denote the NAV

per share at time t by Nt. The market price per share of the fund at time t

will be denoted by Pt. If a fund goes out of business at some particular time

T , then PT = NT because the fund liquidates its holdings and returns the

entire NAV to shareholders. In any period t before liquidation takes place,
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the closed-end fund may choose to pay a dividend, dt. The current price of

a closed-end fund should simply be the present value of expected dividend

payments over the period that the fund is expected to remain in business plus

the present value of the liquidation payment that will eventually be made

when the fund goes out of business. Given the Bernoulli death process, the

current price of a closed-end fund is consequently the sum of two terms3:

Pt =
∞∑
i=1

γ(1− γ)i−1

(
1

Rout

)i

Et[Nt+i]

+
∞∑
i=1

(1− γ)i

(
1

Rout

)i

Et[dt+i] (1)

The first term in equation (1) is the expected present value of liquidation

payments, where discounting is done relative to Rout, the expected period-

on-period total rate of return that fund investors believe is available outside

of the fund in alternative investments. For the investor considering whether

to place his money into the fund, Rout would be the rate of return available

in, say, an index fund, and may be thought of as the opportunity cost of

returns forgone when investing in the fund. From the perspective of period

t, a fund that liquidates at period t+ i goes i−1 periods without liquidating

and then liquidates in the ith period. Hence the liquidation term begins with

the product γ(1− γ)i−1. The second term in equation (1) gives the expected

present value of dividend payments. For a dividend to be paid out at time

t + i, the fund must live through period t + i. That is why each term in this

sum begins with (1− γ)i.
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Equation (1) is unsatisfying because it fails to take into account the fact

that a dividend payment made in period t lowers the NAV of the firm in

later periods. We must also take account of the fact that management fees

paid at time t also reduce the NAV of the fund in later periods, and that our

sentimental investors care about the rate of return that the fund manager is

expected to generate.

Define R to be the period-on-period total rate of return that the fund

manager is expected to earn. Then, if a manager begins with Nt dollars

at the beginning of period t, investors will expect that his stock picking

will increase the NAV of the fund to RNt. Not all of that amount will be

retained by the fund, however. At some point, the manager must be paid.

Closed-end fund management contracts specify that managers will receive a

fraction f < 1 of fund NAV each year. Therefore, the NAV of the fund after

the manager is paid will be (1 − f)RNt. If a fund liquidates, this amount

of NAV would be returned to shareholders. If, however, the fund continues

in business into the next year, dividends must be paid out of (1 − f)RNt.
4

We model dividends by assuming that a constant fraction α of NAV is paid

out each year to investors in the form of dividends.5 Therefore, if a fund

continues in business, its NAV at the start of the next period, after paying

dividends of α(1−f)RNt, will be Nt+1 = (1−α)(1−f)RNt. If we substitute

into equation (1) this model of management fees, dividend payments, and

expected managerial return, we obtain a convergent geometric series which,

when simplified, gives the period t price of the fund as a simple function of
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period t NAV:

Pt =
R

Rout (1− f)γ

1− R
Rout (1− f)(1− γ)(1− α)

Nt

+
R

Rout (1− f)(1− γ)α

1− R
Rout (1− f)(1− γ)(1− α)

Nt. (2)

As with Equation (1), the first term is the expected present value of ex-

pected liquidation payments, while the second term is the expected present

value of dividend payments. However, equation (2) incorporates both fun-

damental and non-fundamental factors into the price of a closed-end fund.

The fundamental factors are management fees, dividend payout rates, the

current value of the underlying portfolio, and the fund death rate. The

non-fundamental factors are given by the differential sentiment ratio, R
Rout ,

which captures investor expectations about the fund manager’s rate of return

relative to the outside, market rate of return.

A nice feature of this pricing model is that it can capture rational expec-

tations as a special case of the differential sentiment ratio. Malkiel (1995)

provides evidence that fund managers cannot systematically beat the mar-

ket over the long run, while Zheng (1999) offers evidence that mutual fund

investors are unable to predict which managers will beat the market even

in the short run. Because of this, an investor having rational expectations

should assume that R
Rout = 1. That is, the rational investor assumes that the

manager of a given fund will on average do neither better nor worse than

the market—both because managers cannot systematically beat the market

and because the rational investor would not believe that he had the power
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to predict which managers would in the future beat the market by sheer

chance. With rational expectations imposed, our pricing model is reduced

to only fundamental factors. Setting R
Rout = 1 in equation (2) and combining

terms gives,

Pt =
[γ + (1− γ)α](1− f)

1− (1− f)(1− γ)(1− α)
Nt. (3)

Equation (3) gives the price of a closed-end fund under rational expec-

tations. With a bit of algebra, it can be demonstrated that this price is

simply the current NAV less the expected present value of management fee

payments. The three parameters f , γ, and α all serve to modulate the future

stream of management fee payments and thereby affect the current price of

the fund. The higher are fee rates, f , the lower is the price of the fund,

as higher rates imply that more of the fund’s capital will flow over time to

managers rather than investors. A higher value of the death rate, γ, implies

a higher price for the fund because the sooner the fund goes out of business,

the fewer times management fees will be paid out, thereby leaving more cap-

ital to shareholders. And the higher the value of the dividend rate, α, the

higher the current price, because any capital paid out to shareholders in the

form of dividends is capital out of which management will not be able to take

fees during later periods.
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2.1 Testing the Differential Sentiment Model

Equation (3) can be used to generate predictions about closed-end fund

discounts. These can be tested against discount observations contained

in Weisenberger/Thompson Financial’s FundEdge data set, which contains

daily and weekly data on US-traded closed-end funds over the period 1981-

2001. The average management fee rate of the 464 closed-end funds trading

in the USA in 2001 was f = .0081, while the average dividend payment rate

was α = .0690. As noted above, the empirically estimated Bernouilli death

rate for closed-end funds is γ = .0364. If we substitute these parameter val-

ues into equation (3), we obtain three testable predictions which we examine

in turn.

Discounts/premia are by definition Dt = Pt/Nt − 1, and can therefore

be easily calculated from equation (3). If Dt < 0, the fund is trading at a

discount, and if Dt > 0 the fund is trading at a premium. If we substitute

the given parameter values, we obtain a model-predicted discount of -7.2%.

Compare this prediction with Figure 1, a histogram of the 225,306 weekly

discount observations in our data set over the period 1985 to 2001, which was

constructed by totaling all of the discounts/premia that fell into 1-percent

wide bins ranging from -50% discounts to +50% premia.6 As can be seen from

Figure 1, discounts/premia are distributed approximately normally around

-6%, which is very close to our model’s prediction of -7.2% for the typical

discount level.7

Equation (3) can also be used to generate two predictions that can be
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tested against cross-sectional regression coefficients. The first predication

concerns the responsiveness of the discount to changes in the management

fee rate, dDt

df
. Taking the derivative of discounts with respect to fees, f , using

equation (3) and substituting for our parameters yields -8.49. The second

prediction concerns the responsiveness of discounts to changes in the divi-

dend payout rate, dDt

dα
. Taking the derivative of discounts with respect to the

dividend payout rate, α, using equation (3) and substituting for our param-

eters gives 0.63. Compare these predictions with Table 1, which presents the

results of regressing individual fund management fee and dividend rates on

fund discount levels.8 Regression (3), gives an empirical estimate of the effect

of management fees on dividends of -8.82. That is very much less that one

standard error away from our model-predicted value of -8.49. The same re-

gression, however, gives 1.96 as the estimated effect of dividend payout rates

on discounts. This value is notably higher than our model-predicted value

of 0.63, but being that it is highly statistically significant, it does confirm

our model’s prediction that that higher dividend payout rates lead to a more

positive Dt.

Taken together, these results suggest that the model works quite well. It

correctly predicts the observed average level of discounts on closed-end funds,

correctly predicts that higher fees will result in higher discounts, and correctly

predicts that higher dividend payout rates will result in lower discounts.

Perhaps most striking, though, is the high R-squared statistic of regression

(3), and the fact that the model provides an explanation as to why 56% of
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the variance in cross-sectional discounts can be explained by management

fees and dividend payout rates.

3 The Necessity of Invoking Sentiment

The predictions just successfully tested were made under the rational ex-

pectations assumption that R
Rout = 1. The true utility of the differential

sentiment model comes from allowing the ratio R
Rout to vary. This is because

discounts on closed-end funds vary significantly over time as shown by Fig-

ure 2, which plots for 1985 to 2001 the average and standard deviation of

the discounts of all funds in operation each week.9 A fully rational model

of closed-end fund pricing is unable to account for such great time variation

in discounts because the factors that affect the rational discount level are

largely time invariant. Management fees are fixed by contract for several

years at a time and are usually renewed at prior levels. There is no evidence

that the death rate of funds varies over time. And dividend payout rates are

very stable over time as well. Because of this stability, rational models of the

discount are hard pressed to explain the large and often precipitous changes

in discounts that are observed in the data.10

Perhaps the most telling weakness of rational explanations for discounts,

though, is their inability to explain why closed-end funds so often trade at

premia. Thirty-one percent of the 225,306 weekly observations in Figure 1

are of premia. Under rational expectations, investors would only pay premia

if fund managers could not only beat the market, but beat it by enough to
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make up for their management fees and trading costs. As is well known,

however, fund managers are unable to systematically earn such high rates of

return.

Even worse for rational explanations of closed-end fund pricing behavior

is the fact that discounts and premia are not only often substantial but

lingering as well. This is starkly illustrated by Figure 3, which plots initial

discounts against discounts 52-weeks later, using one-percent wide bins for

initial discounts. For instance, all discounts falling between -25% and -24%

were identified and of this subset, the average and standard deviation 52-

weeks later were computed. The figure shows that even after 52 weeks,

there is only very weak mean reversion. This can be seen by comparing

the bold average line with the line of dots, which gives what one would

expect if discounts/premia showed absolutely no mean reversion. Fund weeks

where the average discount was -20%, for instance, still had, on average, a

discount of -16.5% after 52 weeks. This lack of mean reversion is itself prima

facia evidence that rational models are largely inapplicable in this context.

Even if someone in the market does bother estimating a rational discount

level, there is only weak arbitrage pressure systematically driving existing

discounts/premia towards that level or any other.11

Discounts/premia are not, however, without any systematic behavior. To

the contrary, they are highly correlated across funds. Lee et al. (1990) find

that the average monthly pairwise correlation between the weekly discount

levels of the nine US-traded funds in their sample is 0.41. Minio-Paluello
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(1998) finds that the average pairwise correlation of discount changes among

UK-traded “International General” funds is 0.30. In the FundEdge data

set, the pairwise average weekly discount correlation in levels is 0.26 over

the period 1985 to 2001. Additionally, if one performs a pooled regression

across all 464 funds of first differences of the average weekly discount on first

differences of individual fund weekly discounts, one obtains a coefficient of

0.91.12 That is, a one percentage point change in the average discount series

is on average met with a 0.91 percentage point change in the discounts of

individual funds.

This evidence supports the idea that the differential sentiment of each par-

ticular fund is composed of an idiosyncratic component and a common com-

ponent. That closed-end funds discounts/premia move in such a coordinated

fashion is consistent with closed-end funds being affected by common shocks

to differential sentiment. That discounts/premia are only very slowly mean

reverting suggests that the cross-sectional distribution of discounts/premia is

caused by idiosyncratic differences in differential sentiment that are largely

permanent. That is, it appears that investors can grow more or less opti-

mistic about the ability of managers as a class to beat the market, while

retaining their sentiments about any particular manager’s prospects relative

to those of other managers. In the next section, I demonstrate that the com-

mon component of differential sentiment appears to have market-wide effects.

As investors grow more or less optimistic about the ability of managers as a

class to beat the market, they don’t just bid up or down the prices of closed-
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end funds. They also shift capital between open-end mutual funds and index

funds, depending on whether they believe that open-end fund managers can

beat index funds, whose returns of course proxy for market returns.

4 Quantifying Differential Sentiment

4.1 The Measurement of Differential Sentiment

Equation (2) can be re-arranged to measure differential sentiment and how

it varies over time. Simply solve equation (2) for the differential sentiment

ratio, S = R/Rout,

S =
R

Rout
=

Pt/(1− f)

Pt(1− θ) + θNt

, (4)

where θ = γ + (1− γ)α, and then plug in values for each of the parameters

f , γ, and α, as well as for price and NAV. We can do this for each fund each

week and thereby derive a time-series that captures the differential sentiment

of each fund. In essence, we are asking what level of differential sentiment

investors must have had for each fund each week to have priced them at

exactly the discounts that we observe in the data set. For instance, if we

find for a given fund at a given week that S = 1, then we know that the

market priced the fund that week under the expectation that managers were

expected to produce returns equal to the market rate of return. Similarly,

an S > 1 indicates that investors believed that managers would beat the

market, while an S < 1 indicates that investors expected managers to trail
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the market. It should be noted that higher values of S are equivalent to

more positive values of Dt (i.e., smaller discounts or greater premia). This

makes sense because investors who become more positive about the ability

of managers to beat the market will bid up fund share prices; that results in

an increase in Dt = Pt/Nt − 1.

In the remainder of this paper, I will demonstrate that the differential sen-

timent ratio moves positively with capital flows into open-end mutual funds

but negatively with capital flows into index funds. To ease the interpretation

of regression slope parameters, let us define lower case s to be

s = 100 ∗ (S − 1) = 100 ∗ (
R

Rout − 1
)
. (5)

Because R/Rout is a number near one, lower case s gives the number of

percentage points by which the sentiment ratio is above or below one–i.e.,

s is approximately the number of percentage points by which investors feel

that managers will beat or trail the market. In the regressions presented

in the next section, this convention will allow us to see how much capital

flows into open-end mutual funds and index funds change in response to a

one-percentage point change in investor beliefs about by how much managers

will beat or trail the market.

In order to capture the common component of differential sentiment, I

used equations (4) and (5) to construct s for six closed-end stock funds that

were in continuous operation during the period 1985-2001. I chose to use only

mature funds because newly formed funds display a systematic movement in
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discount levels that is unrelated to changes in differential sentiment. As doc-

umented by Weiss (1989), newly issued funds are priced at a 10% premia on

their first day of trading in order to raise the money necessary to pay off the

investment bankers for their IPO services. The funds then systematically

move toward discounts over the next 12 months. Because this downward

movement in discounts is unrelated to changes in differential sentiment, I

examine only mature funds in order to avoid bias. There were actually 10

closed-end stock funds in continuous operation during this time. Two of

them, Sterling Capital Corporation and Engex Corporation had to be be ex-

cluded because FundEdge lacks complete NAV and price data for these two

funds over this time period. I also excluded Adams Express and Petroleum

and Resources because they display a huge discontinuous jump, with both

falling from large premia of over +35% to discounts of -12% during the same

week of 1989. That left six mature closed-end stock funds, Bergstrom Capi-

tal, Central Securities, General American Investors, Salomon Brothers Fund,

Source Capital Fund, and Tri-Continental Corporation. For each of these

funds, I constructed s at each month. I then took a simple average of the six

individual s values each month, and used the series thus constructed as my

measure of the common component of differential sentiment in the regressions

presented in Section 5.13

The price and NAV data used to construct s for each fund came from

FundEdge. As a proxy for the fee rate, f , I used the expenses-to-NAV data

item, which is given in fund annual reports as well as S&P Stock Reports.
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This item is only reported once per year, so that I was forced to use the same

value when constructing s for all months of a given year. The dividend payout

rate rate, α, was proxied by running the regression Dividendst = c1+c2NAVt

for each fund over the period 1985-2000 on annual data; the slope coefficient

c2 proxies for α.14 And, finally, the annual death rate, γ, was presumed to

be constant at 0.0364, its empirical value for closed-end stock funds over the

period 1960-1999, as explained previously.

4.2 The Identification of Differential Sentiment

The major difference between closed-end funds and open-end funds is in how

investors buy into and sell out of their positions. Closed-end funds are closed

to new investment. Because of this, they issue a fixed number of shares at

their IPO, with the promise that no more shares will be issued thereafter. The

shares sold at IPO then trade on a secondary exchange, usually the NYSE

or the AMEX. Anyone wishing to buy or sell a position in the fund must

purchase or sell shares in the secondary market; the fund neither redeems

old shares nor issues new shares. Because the number of shares is fixed, the

supply curves of closed-end funds are vertical. Any demand shocks therefore

manifest themselves in prices: closed-end funds clear in prices.

By contrast, each open-end fund promises investors that they will be able

to purchase and redeem shares at par with the fund’s underlying portfolio

value. For instance, suppose that an investor who owns 1% of the shares of

a given open-end fund wishes to liquidate his position. He does not sell his
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shares on a secondary market. Rather, he calls the fund, which guarantees

to redeem the shares at par. If the investor places his sell order in the

morning, the fund waits until the markets close for the day, and then pays

the investor 1% of the value of the fund’s portfolio, marked to market at

closing prices. By guaranteeing to redeem shares at par, open-end funds act

as price fixers. An implication of this is that the supply curves of open-end

funds are horizontal, pegged to the value of their underlying portfolios. Any

demand shocks therefore manifest themselves in quantities: open-end funds

clear in capital flows.

Because the supply curves of closed-end funds are perfectly inelastic while

those of open-end funds are perfectly elastic, we can fully identify the ef-

fects of differential sentiment shocks. If differential sentiment increases, then

investors—having increased expectations about the amount by which man-

agers are likely to beat the market—will attempt to reallocate their portfolios

towards actively managed assets. That is, the demand curves of both open-

end and closed-end funds will shift right simultaneously. Because of their

radically different slopes, however, the simultaneous shift in demand will

cause purely price changes in the market for closed-end funds but purely

quantity changes in the market for open-end funds. Because underlying

portfolio values are unaffected by the change in sentiment, the higher prices

for closed-end funds will mean more positive discounts/premia. These more

positive values of Dt in turn imply larger values of the differential sentiment

ratio. Consequently, we should expect to find a positive correlation between
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our sentiment measure, s, and capital flows into open-end funds.

On the other hand, we should expect to find a negative correlation be-

tween our sentiment measure s and increased capital flows into index funds.

This is because index funds, like open-end funds, are price fixers. In the case

of index funds, prices are fixed to the value of the underlying index. But

whereas an increase in differential sentiment causes the demand curves for

actively managed mutual funds to shift right, it will cause the demand curves

for index funds to shift left. This is because an increase in differential sen-

timent means that investors believe that active management is more likely

to beat the market. In response, investors should take money out of index

funds in order to place it under active management. Therefore, we should

expect to see a negative correlation between our sentiment measure, s, and

capital flows into index funds.

When examining capital flows into index funds in the next section, we

will run regressions on the two largest exchange traded index funds, SPY-

DERS and DIAMONDS.15 The underlying index for SPYDERS is the S&P

500, while the underlying index for DIAMONDS is the Dow Jones Industrial

Average.

All exchange traded index funds feature an arbitrage mechanism that

serves to fix the price of fund shares to the value of the underlying index

despite that fact that fund shares are traded in real time on a secondary

market. The mechanism works in the following way. ETF shares are backed

by “creation units,” which are bundles of the stocks in the underlying index.
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If an ETF’s share price begins to deviate from the value of the underlying

index, then large, predesignated institutional traders have the right to either

exchange ETF shares to redeem old creation units or bundle together new

creation units in exchange for ETF shares. In this way, these predesignated

arbitrageurs increase or decrease the supply of ETF shares until arbitrage

pricing again holds. This mechanism is so effective that the prices of ETF

shares rarely deviate by more than a few basis points from the value of the

underlying index.

Because arbitrage pricing always holds, it must be the case that the level

of the underlying index cannot be responsible for the trading volume observed

in the market for ETF shares. If investors can buy either the shares of the

ETF or the underlying index, and if both have the same price, then decisions

about whether to buy ETF shares must be based upon something other than

price. This paper suggests that differential sentiment may be responsible for

some of the trading volume.

Because the arbitrage mechanism of ETFs keeps ETF share prices pegged

to the value of the underlying index, ETF supply curves are horizontal. This

means that when changes in differential sentiment cause investors to buy or

sell index fund shares, they only affect trading volume. Consequently, when

running regressions in the next section, I utilize data on the trading volume

of SPYDERS and DIAMONDS as my measure of capital flows into and out

of index funds in response to changes in differential sentiment.
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5 Sentiment and Portfolio Allocation

5.1 Positive Open-end Fund Capital Flows

Table 2 presents the results of regressions of our differential sentiment mea-

sure, average s, on capital flows into, respectively, open-end stock funds and

open-end bond funds using monthly data over the period January 1988 to

February 1998.16 The data on open-end capital flows was obtained from the

Investment Company Institute, which is the trade group representing all US

unit trusts, open-end mutual funds, and closed-end mutual funds. While the

Investment Company Institute does not report capital flows into each fund

separately, it does disaggregate total open-end fund capital flows between

bond funds and stock funds. This disaggregation is convenient because by

running separate regressions on capital flows into bond and stock funds, we

can gain some insight into how wide ranging the effects of differential sen-

timent may be. In particular, we can see whether our sentiment measure,

which was derived from six closed-end stock funds, is related to the capital

movements of open-end bond funds.

The average s series is used as an explanatory variable, along with per-

centage yields on 1-year Treasuries and the percentage 1-year trailing return

on the CRSP total returns S&P 500 Index.17 The dependent variables are,

for bond and stock funds respectively, the ratios of new sales to redemptions,

both measured in dollars. If sentiment improves, then we should expect to

see new sales increase and redemptions fall—implying that their ratio should
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increase as sentiment increases. This conjecture is consistent with the OLS

results presented in Table 2.

Whether regressions are run in levels or in first differences, changes in s

are positively correlated with the ratio of new sales to redemptions, and this

holds true for both stock funds and bond funds. This finding is consistent

with Malkiel (1977) and Lee et al. (1991), who find a positive but insignificant

relationship between open-end fund net redemptions and discounts using US

data, and Levis & Thomas (1999) who find a positive and significant relation-

ship between discounts and individual-investor capital flows into open-end

funds in UK data. More interestingly, the effect of differential sentiment re-

mains robust even after the inclusion of short term interest rates and trailing

stock returns. This is supportive of our hypothesis that s measures sentiment

about expected differential or relative returns, rather than sentiment about

expected absolute returns. The statistical significance of the coefficient on

s, even when outside rates of return are accounted for, demonstrates that

differential sentiment has an effect on capital flows that is independent of

general expectations about outside rates of return.18

It is especially striking that while our measure of s was constructed from

closed-end stock funds, it is highly correlated with capital flows into open-end

bond funds. This holds true even after taking into account the outside rate

of return (the interest rate) that should most affect capital flows into bond

funds, and indicates that changes in sentiment about whether managers can

beat the market affect all managed investment vehicles no matter what their
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underlying portfolios consist of.

5.2 Negative Index Fund Capital Flows

It is important to examine the sign of the relationship between s and index

fund capital flows not only to test the predictions of the differential sentiment

hypothesis but also because the sign can distinguish between the differential

sentiment hypothesis and the investor sentiment hypothesis of Lee et al.

(1991). While the positive relationship between s and open-end capital flows

is consistent with both differential sentiment and investor sentiment, the

two theories predict very different things with respect to index fund capital

flows. This difference has to do with the fact that differential sentiment deals

with expected relative rates of return, whereas investors sentiment deals with

expected absolute rates of return.

As explained above, the differential sentiment hypothesis predicts that

there should be an inverse relationship between discounts and capital flows

into index funds. As investors become more sure that managers will beat the

market, they will pull money out of index funds in order to put it into closed-

end funds. The money flowing into closed-end funds will drive up their spot

prices, raise Dt = Pt/Nt − 1, and thereby generate a negative correlation.

On the other hand, the investor sentiment hypothesis would predict a

positive relationship between discounts and index fund capital flows. As in-

vestors become more sanguine about asset returns, they should put more

money into all types of assets. In particular, there should be increased cap-
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ital flows into index funds at the same time that the increased capital flows

into closed-end funds bid up their spot prices and raise Dt. We can therefore

distinguish between investor sentiment and differential sentiment by exam-

ining the relationship between index fund capital flows and our s variable,

which moves positively with discounts.19

To test whether differential sentiment has a positive or negative effect on

index fund capital flows, I ran regressions of our six-fund average s series on

monthly trading volume data for SPYDERS and DIAMONDS. As explained

previously, changes in sentiment will manifest themselves only in trading vol-

ume because the ETF arbitrage mechanism prevents sentiment shocks from

affecting ETF share prices. The independent variable used in the regressions

was total monthly trading volume divided by total shares outstanding, ex-

pressed as a percentage. The regressions were performed in both levels and

first differences, with the percentage yield on 1-year Treasuries and the trail-

ing percentage 12-month return on each fund’s respective underlying index

serving as proxies for the outside rate of return.20 The regressions involving

SPDRS were run on monthly Reuters volume data covering 1/1993–12/2000

while those involving DIAMONDS were run on monthly CRSP volume data

covering 1/1998–12/2000.21

The regression results are presented in Table 3. Consistent with the dif-

ferential sentiment hypothesis, but inconsistent with the investor sentiment

hypothesis, there is a strong negative relationship between s and index fund

capital flows. Slope coefficients on s are negative and highly significant for
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all regressions run in first differences and for three of the four levels specifi-

cations. As with the regressions of s on open-end capital flows, the inclusion

of proxies for outside rates of return does not weaken the effect of differential

sentiment. On the contrary, such proxies increase the statistical significance

of s in all specifications. The fact that s has an effect independent of the

proxies for outside rates of return is, as mentioned before, indicative of the

independent impact that differential sentiment has upon capital allocation.

6 Conclusion

This paper has argued that the discounts/premia observed on closed-end

mutual funds vary over time because of changes in differential sentiment,

sentiment as to how much the returns of actively managed portfolios will

exceed those of passively held portfolios. A closed-end fund pricing model

incorporating differential sentiment was presented and utilized to transform

a time series of discounts/premia into a time series of differential sentiment.

That sentiment series was demonstrated to be positively correlated with ag-

gregate capital flows into actively managed open-end mutual funds and neg-

atively correlated with capital flows into passively managed exchange-traded

index funds. These correlations are consistent with investors re-allocating

their portfolios based on their beliefs about the ability of managers to beat

the market: when confidence in managers improves, investors move capital

from passively managed portfolios into actively managed portfolios, and vice

versa.
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Future research should examine whether sentiment—be it differential sen-

timent or some other form of sentiment—has explanatory power for other

assets. In an upcoming paper, I demonstrate that differential sentiment

strongly affects the prices of Real Estate Investment Trusts (REITs), with

discounts on REITs being strongly and significantly correlated with discounts

on closed-end funds. This is further proof that differential sentiment has

wide-ranging effects. But REITs, like index funds and mutual funds, are

pooled investment vehicles. A more fundamental issue is whether sentiment

affects the underlying securities that pooled investment vehicles hold in their

portfolios.

This paper presents evidence that casts doubt on the assumption that

fundamentals-based asset pricing generally prevails for such securities. That

is because closed-end funds, while trading like common stock and while meet-

ing the full-information conditions required for rational pricing, still appear

to be priced irrationally. Specifically, closed-end funds are required by law to

publish their portfolios weekly, and many now update them in real time on

their web sites. Closed-end fund investors, therefore, have possession of pre-

cise and timely knowledge about the fundamental value of closed-end funds,

and therefore of their fundamental share prices. Yet, this full-information

environment does not yield rational prices. Figure 1 makes clear that dis-

counts/premia vary significantly from fundamental levels. And Figure 3

shows starkly that price deviations away from fundamental levels are ex-

tremely long lasting.
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The failure of arbitrage to keep prices at fundamental levels in a market

where fundamentals are known immediately and with precision by all partic-

ipants calls into question how quickly deviations of prices from fundamentals

will be corrected in markets—such as those for common stock—where fun-

damentals are known only very imprecisely. That, in turn, opens up the

possibility that sentiment may be able to affect the share prices of com-

mon stock. Future research should investigate whether the lack of arbitrage

pressure found for closed-end funds extends to operating company stocks,

and, if such is the case, whether non-rational sentimental factors are able to

influence share prices.
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7 Notes

1Let Xt be the number of funds alive at the start of year t and Ot be
the number of those that die during year t. Assuming that fund deaths are
Bernoulli, with death rate γ, the expected number of deaths in year t is
γXt. A Pearson’s Chi-squared test statistic can therefore be constructed as

D2 =
∑1999

t=1960
(Ot−γXt)2

γXt
. D2 is distributed approximately χ2 with 1999-1960-

1 = 39 degrees of freedom. Our estimated D2 is 30.52 which is significantly
less than than the 90% critical value of 51.81. We fail, therefore, to reject
the hypothesis that fund deaths follow a Bernoulli process.

2Annual fund death rates were regressed against macro variables, fund
returns, fund discount levels and other variables that might plausibly affect
the decision to liquidate a closed-end fund or convert it to an open-end fund.
All were found to be uncorrelated with fund death rates.

3We must also impose a transversality condition to rule out speculative

bubbles. Formally, we require that limn→∞(1−γ)n
(

1
Rout

)i
Et[Pt+n+dt+n] = 0.

4Under US securities law, closed-end funds can avoid paying taxes on the
capital gains and dividend payments generated by their underlying portfolios
by passing on at least 90% of said gains and dividend payments to the share-
holders of the fund. These disbursements are made as dividend payments to
fund shareholders. A consequence of this tax law is that fund NAVs are more
or less constant over time; any gains they make are passed on to shareholders,
leaving the management with about the same principal year after year.

5My doctoral dissertation, Flynn (2002), examines several more compli-
cated dividend processes. No plausible model of dividend payments can
generate enough variation in fund payment streams to explain the high ob-
served time variation in fund discounts. Consequently, I utilize the most
parsimonious dividend process in the model presented here.

6This histogram truncates the tails of the distribution. 760 observations
(0.33% of the total) were of discounts less than -50% or premia greater than
+50%. The lowest discount was -66.5% and the highest premia was 205.4%.

7The mode of Figure 1 is 6%, and the mean is 4.3% due to the posi-
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tive skewness of the distribution; large premia are more common than large
discounts.

8The presented regression was run on data for the week of 6/22/2001.
That date is the last date for which my version of FundEdge has data. Similar
regressions run on earlier dates produce similar slope coefficients with equally
high significance.

9The weekly standard deviation is much less volatile during later weeks in
Figure 2 because the number of funds increased greatly over this time period.
The January 4, 1985 Wall Street Journal lists only 25 funds. By June, 2001,
there were 464 listed by Weisenberger/Thompson Financial. With so many
more funds, the discount of a single firm has only a small effect on the average.
It is also interesting to note that when average Dt falls, so does the variance
of fund discounts. A preliminary investigation indicates that when average
discounts/premia fall, most of the reduction in variance is caused by funds
whose large premia suddenly become reduced.

10See Dimson & Minio-Kozerski (1999) for an excellent survey of both ra-
tional and behavioral explanations for discounts and premia on closed-end
funds. Though explanations consistent with rational expectations based on
tax frictions, illiquidity of fund shares, agency problems and other considera-
tions are capable of generating discounts near the average observed discount,
they cannot explain wide deviations from the mean discount, nor sudden
movements in the average discount level across all funds, nor premia.

11However, there was very strong mean reversion prior to 1985. I obtained
the Lee et al. (1990) discount data for the 1965-1985 period from Charles
Lee. If we construct a diagram like Figure 3 using that data, we find very
quick mean reversion. In fact, if we plot initial discounts against discounts
52-weeks later, the line in the diagram is horizontal at about -12%. That is,
after 52-weeks, initial discount levels do not matter because discounts/premia
always reverted to the mean discount of -12%. Why discounts were so much
more mean-reverting before 1985 is an open topic for investigation, as is why
the level to which discounts reverted during that period was so much lower
(-12% versus -6%) than in more recent years.

12The coefficient is unaffected by use of fixed effects or random effects and
in either case has a t-statistic of at least 75.2. If one runs separate regressions
for each fund of first differences of fund discounts on first differences of the
average discount series, the mean slope coefficient over the 464 firms is .98,
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with 424 of the regressions featuring t-statistics in excess of 2.0. (The average
t-statistic is 6.19.) Thus, whether one runs a pooled regression or individual
regressions, individual fund discount innovations are found to be extremely
highly correlated with innovations of the average discount series.

13A simple average, rather than a capital weighted average, is appropriate
because the common component of differential sentiment should affect all
funds discounts/premia equally, regardless of fund size; capital weighting
simply gives more weight to the idiosyncratic component of the largest fund.
However, if the regressions of Section 5 are run on a capital weighted s series,
they give about the same slope coefficients, but have weaker t-statistics. The
results of this paper are not dependent on the weighting scheme.

14If we instead take the ratio of annual dividend payments to year-end
NAV as our proxy for the dividend rate, the average s series thus created
is not very different and the regression results of Section 5 not substantially
affected.

15I run regressions on data through the year 2000, up to which time SPY-
DRS and DIAMONDS were the two largest ETFs by market capitalization.
Currently, SPYDRS are still the largest exchange traded fund, but DIA-
MONDS have slipped to fifth place.

16The data ends with February 1998.

17The index is “total returns” because it includes re-invested dividends.
Using the CRSP index that excludes dividend re-investment had no mean-
ingful effect on the results.

18The regressions presented utilized trailing S&P 500 stock returns to help
(along with interest rates) proxy for outside rates of return, Rout. One may
object that trailing returns do not capture investor expectations. To see
if this mattered, I also ran the regressions using one-year horizon ex post
stock returns, as though investors had perfect foresight. The results were
insignificantly affected.

19If you run regressions of discounts on capital flows into open-end funds
and index funds, you get the same positive and negative signs as you get
when running regressions on s. However, s contains more information, and
therefore the regressions involving s possess better fits statistically.

20As with open-end funds, using 12-month ex post returns on each fund’s
underlying index, in order to give investors perfect foresight and thereby
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model forward looking expectations, does not affect the regression results.

21SPDRS began trading in January of 1993, and DIAMONDS in January
of 1998. Reuters provides SPYDR total shares outstanding under the ticker
symbol ˆsxvso. Shares outstanding data for DIAMONDS were available only
through CRSP.

32



Figure 1: 225,306 Weekly Discount Observations, 1985-2001
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Table 1: Regressions of Fee and Dividend Rates on Discounts

(1) (2) (3)

Constant 1.12 -12.60 -10.74
(0.51) (-7.84) (-5.62)

Fee Rate -7.19 -8.86
(-2.48) (-5.86)

Dividend Rate 1.27 1.96
(5.52) (9.46)

R2 0.04 0.32 0.56

F-statistic 10.11 199.7 145.3

Observations 234 422 234

The dependent variable is the discount level expressed as a percent. The t-
statistics given in parentheses were constructed using Newey & West (1987)
standard errors, which are consistent under heteroskedasticity. As can be
seen from regression (3), 56% of the cross-sectional variance of closed-end
fund discounts is explained by management fee and dividend payout rates.
These results are for OLS regressions run on the last date available in the
FundEdge data set, 6/22/2001. Regressions run on other dates produce
similar results. 234 of the 464 funds in the data set contained complete price,
net asset value, fee and dividend data and were included in these regressions.
The dividend payout rate for each fund was proxied by totaling the dividends
paid by a fund in the year leading up to 6/22/2001 and dividing by the fund’s
portfolio value on that date.
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Table 2: Regressions of Differential Sentiment on Open-end Capital Flows

A. Regressions in Levels

Stock Fund Stock Fund Bond Fund Bond Fund
New Sales New Sales New Sales New Sales

to Redemptions to Redemptions to Redemptions to Redemptions
Constant 1.75 2.19 1.41 2.07

(8.57) (5.91) (8.18) (5.07)
s 0.19 0.20 0.30 0.23

(2.02) (1.84) (3.22) (2.70)
1-yr Treas Ylds -0.11 -0.13

(-1.80) (-2.32)
1-yr SP 500 Rtrn 0.01 0.004

(3.15) (1.34)
Error Model AR(3) AR(3) AR(3) AR(3)
R-squared 0.84 0.87 0.81 0.82

DW 1.99 2.03 1.97 1.96
BG Prob 0.85 0.81 0.66 0.70

B. Regressions in First Differences

d(Stock Fund d(Stock Fund d(Bond Fund d(Bond Fund
New Sales New Sales New Sales New Sales

to Redemptions) to Redemptions) to Redemptions) to Redemptions)
Constant 0.003 0.0003 0.005 0.002

(0.32) (-0.04) (0.43) (0.23)
d(s) 0.19 0.22 0.26 0.22

(1.76) (2.23) (2.78) (2.43)
d(1-yr Treas Ylds) -0.06 -0.15

(-1.04) (-2.17)
d(1-yr SP 500 Rtrn) 0.01 0.004

(3.32) (1.54)
Error Model AR(2) AR(2) AR(2) AR(2)
R-squared 0.18 0.32 0.15 0.21

DW 2.01 2.06 1.97 1.97
BG Prob 0.92 0.65 0.57 0.63

This table presents the results of regressions run in both levels and first differences of
differential sentiment, s, and control variables on aggregate monthly ratios of new sales
to redemptions of open-end funds over the period 1/1988–1/1998. T-statistics based on
Newey & West (1987) standard errors (which are consistent under heteroskedasticity and
autocorrelation) are given in parentheses. Results are reported separately for open-end
stock funds and open-end bond funds. Consistent with our hypothesis that differential sen-
timent has market-wide effects, as our measure of differential sentiment that was derived
from closed-end funds rises, the ratio of new sales to redemptions of open-end funds rises.
This relationship is statistically significant for 7 of the 8 specifications. The inclusion of
short-run interest rates and stock-market returns demonstrates that the effect of differen-
tial sentiment is independent of investor perceptions of alternative, manager-independent
rates of return. This is consistent with our hypothesis that s measures investor sentiment
about the ability of managers to beat such alternative, manager-independent rates of re-
turn. The reported Breusch-Godfrey probability (BP Prob) is the probability under the
null of having no autocorrelation at up to 4 lags.
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Table 3: Regressions of Differential Sentiment on Index Fund Capital Flows

A. Regressions in Levels

SPYDRS SPYDRS DIAMONDS DIAMONDS
New Capital New Capital New Capital New Capital
Flows, Pct. Flows, Pct. Flows, Pct. Flows, Pct.

Const. 2.73 2.87 2.28 11.34
(1.99) (0.73) (1.79) (5.07)

s -1.81 -2.01 -1.25 -1.02
(-2.47) (-2.56) (-1.50) (-2.44)

1-yr Treas Ylds -0.06 -1.62
(-0.09) (-4.37)

12-mo Own Rtrn -0.14 -0.009
(-2.75) (-0.28)

Error Model AR(1) AR(1) AR(2) AR(2)
R2 0.61 0.66 0.21 0.47
DW 2.07 2.03 1.80 2.01

BG Prob 0.80 0.75 0.61 0.92

B. Regressions in First Differences

d(SPYDRS d(SPYDRS d(DIAMONDS d(DIAMONDS
New Capital New Capital New Capital New Capital
Flows, Pct.) Flows, Pct.) Flows, Pct.) Flows, Pct.)

Const. -0.07 -0.07 0.01 0.06
(-0.42) (-0.44) (0.07) (0.30)

d(s) -1.84 -2.01 -2.34 -2.66
(-2.19) (-2.74) (-2.85) (-3.28)

d(1-yr Treas Ylds) -0.21 -2.86
(-0.28) (-2.25)

d(12-mo Own Rtrn) -0.14 -0.02
(-3.01) (-0.58)

Error Model AR(0) AR(0) AR(2) AR(2)
R2 0.07 0.20 0.30 0.41
DW 2.29 2.21 2.19 2.21

BG Prob 0.08 0.10 0.48 0.53

This table reports the results of running regressions in both levels and first differences
of differential sentiment, s, and control variables on capital flows into SPYDRS and DI-
AMONDS exchange-traded index funds as measured by the ratio of trading volume to
total shares outstanding, expressed as a percentage. T-statistics based on Newey & West
(1987) standard errors (which are consistent under heteroskedasticity and autocorrela-
tion) are given in parentheses. Whether run in levels or differences and with or without
control variables, increases in sentiment coincide with decreased flows of capital to DIA-
MONDS and SPYDRS. The inclusion of short-run interest rates and index own returns as
controls demonstrates that the effect of differential sentiment is independent of investor
perceptions of alternative rates of return. This is consistent with our hypothesis that s
measures investor sentiment about the ability of managers to beat the market. The re-
ported Breusch-Godfrey probability (BP Prob) is the probability under the null of having
no autocorrelation at up to 4 lags.
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Figure 2: Average and Standard Deviation of Discounts, Weekly
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Figure 3: Initial Discounts/Premia vs. Average and Standard Deviation 52
Weeks Later
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