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Abstract

On The Geometry of Constant Returns

Constant returns to scale, always a simplifying assumption, is often also much more: many

important results depend critically on the very special properties of this class of production

function. This paper provides a unified set of simple proofs for most of the crucial analytical

properties of constant returns production and their implications for firm costs. Only familiar

diagrams and high school geometry are used, and the proofs are written to be easily accessible

to college sophomores.



1 Introduction

Students are typically introduced to constant returns production in intermediate micro-

economics. Thereafter—in courses on international trade, industrial organization, public

finance, and other applied fields—they will need to have mastered the special properties of

constant returns production if they are to fully understand the many telling illustrations,

useful examples, and sometimes central results that ultimately depend upon them.

In the theory of international trade, the Heckscher-Ohlin Theorem, along with its prin-

cipal corollaries and extensions, including the Factor Price Equalization Theorem, depend

crucially on the special properties of constant returns production. So, too, does the Non-

Substitution Theorem in general equilibrium, and the Product Exhaustion Theorem in the

theory of distribution. In the theory of economic growth, constant returns is an indispens-

able assumption in neoclassical (Solow) growth models, as well as many newer two-sector

endogenous growth models. Ubiquitous in theory and applications, constant returns is usu-

ally far from a benign assumption–instead, it is usually at the very heart of the chain of

reasoning and the eventual result.

When production displays constant returns to scale, firm cost functions take simple and

analytically convenient forms. With two factors and fixed factor prices, short-run average

cost is U-shaped and short-run marginal cost is upward sloping; in the long run, average

and marginal cost are constant and equal to one another. This combination of conventional

short-run and simple long-run cost behavior accounts for much of the popularity of constant

returns with theorists and teachers.

Because it typically precedes the specialized field courses, the intermediate micro class

is a good place to become acquainted with the unique properties of constant returns. Yet

many instructors choose not to employ calculus at this level of the curriculum, and so may

feel they must simply assert without proof what the student will need to know. Fortunately,

this is not the case.
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This paper provides simple proofs for most of the crucial analytical properties of constant

returns production and their implications for firm costs. Only familiar diagrams and high

school geometry are used, and the proofs are written to be easily accessible to college sopho-

mores. Technical jargon that will normally be unfamiliar to students has been minimized so

that students may read and fully comprehend the arguments in this paper.

2 Geometry

Consider a typical production function, f , summarizing efficient possibilities for combining

two inputs to produce a single output. Let

Q = f(L,K)

denote the greatest quantity of output that can be produced during some period of time if the

firm uses amounts L and K of two factors we’ll call labor and capital, respectively. We will

assume throughout that f(0, 0) = 0 and that this production function is strictly increasing

in non-negative L and K, so that (1) no output is possible without positive amounts of some

input, and (2) the marginal product of labor, MPL ≡ ∆Q/∆L, and the marginal product

of capital, MPK ≡ ∆Q/∆K, are finite and strictly positive everywhere.

A production function such as this can be represented by its isoquant map. Each isoquant

is a level-curve of the production function drawn in the (L,K)-plane, giving all combinations

of the inputs capable of producing a common level of output. Under our assumptions so far,

some isoquant will pass through every point in the (L,K)-plane, isoquants will not cross,

they will be negatively sloped, and isoquants denoting greater levels of output will lie farther

from the origin in a northeasterly direction.

With any production function, it is useful to distinguish between two broad classes of

properties: these are its returns to variable proportions and its returns to scale. When

we consider returns to variable proportions, we ask how output behaves as more or less of

a variable factor is combined with a given amount of some fixed factor, and this is most
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relevant to the firm’s decision making in the short run. When we consider returns to scale,

we hold constant the proportions in which factors are combined, and ask how output behaves

as the scale with which both are employed is increased or decreased together. Returns to

scale are thus most relevant to the firm’s long-run production decisions because only in the

long run is the firm free to vary all the factors it uses.

Set Figure 1 Here

To better understand this distinction, consider the production function represented in

Figure 1. If, in the short run, the firm must employ fixed capital of K̄2, it can increase output

from Q to Q′ only by increasing labor from L0 to L3, varying the proportions in which the

two factors are used. Returns to variable proportions may thus be usefully thought of as

describing how output behaves as we move out a horizontal through the isoquant map, such

as the horizontal K̄2AB. By contrast, consider the input combination (L1, K1), producing

output level Q at point C. If both capital and labor are doubled, tripled or scaled by any

common factor t, the proportions in which they are combined remain unchanged, i.e., capital

per worker remains constant at K1/L1 = tK1/tL1 for all t > 0, but the production point

moves in or out the ray OCD. Thus, we may think of returns to scale as describing how

output behaves as we move out through the isoquant map along a ray from the origin such

as OCD.

In general, returns to scale may be increasing, decreasing, or constant, as output increases

more than in proportion, less than in proportion, or exactly in proportion to any change in

the scale of input use. In this paper, we shall be concerned exclusively with constant returns

to scale. Moreover, we will restrict our attention even further to only those constant returns

production functions whose isoquants have the familiar convex-away-from-the-origin shape

most commonly encountered in theory and applications. For future reference, we collect up

our assumptions and define terms precisely in the following.
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DEFINITION 1 Constant Returns Production1

Let the production function f(L,K) be strictly increasing in L and K, and let its isoquants

be strictly convex away from the origin. Then f(L,K) has the property of constant returns

to scale (globally) if, for all scalars t > 0 and all non-negative input combinations (L,K),

f(tL, tK) = tf(L,K).

When the production function displays constant returns to scale, doubling both inputs

always doubles output; indeed scaling both inputs by any common factor t > 0 scales output

by exactly that same factor, t. Familiar examples of this sort of production function include

the Cobb-Douglas form, Q = ALaK1−a, where A > 0 and 0 < a < 1, and the CES form,

Q = A(Lr + Kr)1/r where A > 0 and 0 6= r < 1.

Constant returns has significant–and unique–structural implications for the isoquant

map. In the next two subsections these are established in a series of propositions, focusing

first on the implications of constant returns for the spacing of isoquants looking out a ray

from the origin, then looking out a horizontal. In each of these propositions the production

function is assumed to satisfy the conditions of Definition 1.

2.1 Looking out a Ray

We begin with a most basic property of the isoquant map under constant returns to scale.

We will show that the level of output produced by any combination of inputs will always be

proportional to the distance from the origin of the corresponding point in the (L,K)-plane.

We recall that a ray is any straight line emanating from the origin, and express this property

as follows.

1A production function having the properties we’ve assumed is said to be strictly increasing, strictly
quasiconcave, and homogeneous of degree one in its arguments. (Note we specifically exclude here linear
production functions whose isoquants will be parallel straight lines.) See, for example, Jehle and Reny 2000
for more detail on the mathematical properties of such functions.
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Set Figure 2 Here

PROPOSITION 1 Output is proportional to distance out any ray.

Proof: In the isoquant map depicted in Figure 2, choose any ray from the origin, OR. Let

(L1, K1) be the coordinates of the point where OR intersects the isoquant producing one

unit of output (the “unit -isoquant”). Let

α ≡
√

L2
1 + K2

1 (1)

denote the distance along OR from the origin to the unit-isoquant.

Pick any level of output, Q. The point A marks the intersection of the Q-level isoquant

and the ray OR. Obviously, Q units of output is Q-times as much as one unit of output.

Under constant returns, if L1 and K1 together produce one unit then, keeping factor pro-

portions the same, it will take just Q-times as much of each to produce Q units of output.

Thus, the coordinates of A must be (QL1, QK1), as indicated.

Now compute the distance OA to the Q-unit isoquant along OR, and compare it to the

distance to the unit-isoquant along that same ray. According to Pythagorous,

OA =
√

(QL1)2 + (QK1)2

=
√

(L2
1 + K2

1)Q2

=
√

(L2
1 + K2

1)Q.

Substituting from (1) into the last line, then solving for Q, we obtain

Q =
1

α
OA.

As we sought to show, this says the output produced at any point along a ray from the origin

will always be strictly proportional to the distance of that point from the origin.
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When output is proportional to distance from the origin, it is easy to see that as long

as we remain along the same ray, cutting that distance in half will put you on an isoquant

producing only half as much output; doubling or tripling that distance will put you on an

isoquant producing twice and three-times as much output, respectively, and so on.

In the next proposition, we consider the distance along a common ray between isoquants

giving, successively, equal increments in output.

PROPOSITION 2 Successive isoquants giving equal increments in output are equally spaced

along any ray.

Proof: Once again refer to Figure 2. Choose any output, Q, and locate its isoquant. Pick

an increment in output of any size, ∆Q > 0, and locate the isoquants giving Q + ∆Q and

Q + 2∆Q units of output so that the increment in output between them is the same, and

equal to ∆Q. We need to show that as we look out any ray OR, the distances AB and BC

are equal.

We can use the previous result to prove this one. Since output is proportional to distance

out the ray OR, we know from Proposition 1 that

OC = α(Q + 2∆Q) and

OB = α(Q + ∆Q) and

OA = αQ.

Subtracting the second from the first, and the third from the second gives,

OC −OB = α(Q + 2∆Q−Q−∆Q) = α∆Q and

OB −OA = α(Q + ∆Q−Q) = α∆Q,

so OC − OB = OB − OA. But BC = OC − OB and AB = OB − OA, so AB = BC and

our proof is complete.
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Propositions 1 and 2 provide useful geometric groundwork for what lies ahead, but our

next proposition is the first with direct economic importance. Students will have learned that

the (absolute value of) the slope of an isoquant at any point in the (L,K)-plane is called the

marginal rate of technical substitution, or MRTS. The MRTS measures (locally) the rate

at which labor can be substituted for capital with no change in the level of output produced,

and is therefore important in many decisions the firm must make. In general the MRTS

will depend on both L and K separately—if either, or both, are changed we generally expect

the MRTS to change as well. Under constant returns, however, the MRTS is completely

independent of scale, and depends only on factor proportions—whether producing one unit

or one million, as long as the firm uses the same amount of capital per worker its possibilities

for substituting one for the other remain unchanged.

The implications of this for the isoquant map are sweeping. First recall that only by

moving along a ray from the origin in the (L,K)-plane will capital per worker remain constant

as scale is varied. If the MRTS depends only on factor proportions, not on scale, then the

slope of every isoquant as it crosses a common ray from the origin must always be the

same. Though the MRTS will be different along different rays, changing the overall scale of

production by moving in or out any given ray will have no effect at all on the MRTS. Thus,

under constant returns, isoquants must all be parallel as we look out any ray. We will now

establish this important implication of constant returns production.

PROPOSITION 3 Isoquants are radially parallel.

Proof: Consider Figure 3. There we’ve identified isoquants for arbitrary levels of output

Q and Q′, and have chosen an arbitrary ray from the origin, OAA′. Ultimately, we want to

show that the slope of the tangent to the isoquant at A is equal to the slope of the tangent

to the isoquant at A′.

Our approach will be somewhat indirect. To preview, first we construct another ray,

OBB′, and the chords A′B′ and AB. We show that the chord AB is parallel to the chord
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A′B′, and then we make a limiting argument to complete the proof.

Set Figure 3 Here

To begin, define λ ≡ Q′/Q, so we may write Q′ ≡ λQ. Under constant returns, to

achieve the λ-fold increase in output between A and A′ requires that the amount of labor

and capital at A′ be exactly λ-times as much as at A. Similarly, the coordinates of B′ must

be λ-times as great as the coordinates at B. The coordinates of these points are therefore

marked accordingly in Figure 3.

It is easy to see that the slope of chord AB is −1 times the ratio AC/CB, or,

Slope of the chord AB =
−(KA −KB)

LB − LA

. (2)

Similarly, the slope of the chord A′B′ is −1 times the ratio A′C ′/C ′B′, or,

Slope of the chord A′B′ =
−(λKA − λKB)

λLB − λLA

=
−λ(KA −KB)

λ(LB − LA)

=
−(KA −KB)

LB − LA

. (3)

The right-hand sides of (2) and (3) are the same, so we’ve shown that the slope of A′B′ is

equal to the slope of AB.

Now, the slope of A′B′ approximates the slope of the tangent at A′, and the slope of AB

approximates the slope of the tangent at A. To complete our argument, imagine picking the

ray OBB′ closer and closer to the ray OAA′. The slope of A′B′ and AB remain equal to one

another as in equations (2) and (3). At the same time, the slope of A′B′ becomes a better

and better approximation to the slope of the tangent at A′, and the slope of AB becomes a

better and better approximation to the slope of the tangent at A. In the limit, as the ray

OBB′ swings toward OAA′, the slope of A′B′ converges to the slope of the isoquant at A,
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and the slope of AB converges to the slope of the isoquant at A. But because the chords

remain parallel as they approach their respective limits, those limits must be equal, too, so

the slope of the tangent at A′ must equal the slope of the tangent at A, and our proof is

complete.

Notice the high degree of generality in our proof. The two isoquants were picked arbi-

trarily, and so was the ray OAA′. Therefore, we can be sure that the slopes of any two

isoquants will be equal along any common ray from the origin under constant returns to

scale.

2.2 Looking out a Horizontal

In the short run, a firm must operate with fixed amounts of some factor. Just how output

behaves as more of the variable factor is combined with that fixed factor has a direct and

important impact on the cost of output in the short run.

In the typical textbook example of production in the short run, the total product curve

first rises at an increasing rate, then rises at a decreasing rate as output expands—that

is, the production function first displays increasing marginal returns and then diminishing

marginal returns to the variable factor.

Yet this will not be the behavior of marginal returns when production exhibits constant

returns to scale. It is a little-emphasized and perhaps not widely appreciated property of

constant returns that, as long as isoquants are strictly convex, both the marginal product

of labor and the marginal product of capital are everywhere diminishing—i.e., there is no

region in which marginal returns to either factor are either increasing or constant.

For what follows, we recall that the marginal product of a factor (MPL or MPK) is

the increment in output produced by a one-unit increase in the amount of that factor used,

holding the amount of the other factor constant. We say there are diminishing marginal

returns to a factor whenever successive one-unit increments in that factor produce smaller
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and smaller corresponding increments in output. Of course, this is equivalent to saying that

to produce equal increments in output requires successively larger and larger increments of

the factor. It is this latter interpretation which is most useful in our proof.

PROPOSITION 4 Marginal returns to both factors (MPL and MPK) are everywhere

diminishing.

Proof: The arguments required to establish these claims with respect to the separate factors

labor and capital are completely identical, so we will only give the arguments for labor here,

leaving the reader to supply them for the other factor, capital.

First, consider Figure 4. There we’ve chosen an arbitrary level of output, Q, and an

arbitrary increment, ∆Q. Let capital be fixed at K̄. To prove this proposition, we must

show that under constant returns to scale, the horizontal distance between these isoquants

giving equal increments in output becomes larger as we move out that horizontal. In Figure

4, we need to show that AB < BC.

Set Figure 4 Here

First construct the ray OHBDR, and lines tangent to the isoquants at H and at D. Now

look at the triangles 4A′BH and 4EBD. Clearly, 6 A′BH = 6 EBD, as these are opposite

angles formed by intersecting straight lines. By Proposition 2, BH = BD because these

are distances along a common ray between isoquants giving equal increments in output. By

Proposition 3, the slope of the isoquant at D must be equal to the slope of the isoquant at

H, so side A′H is parallel to side ED. Therefore, as OHBDR cuts those two parallel lines,

we must have 6 BHA′ = 6 BDE.

We’ve now established that two corresponding angles and the sides including them are

equal in 4A′BH and 4EBD. By “angle-side-angle,” these two triangles must therefore be
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congruent. From this we conclude that A′B = BE, because these are corresponding sides of

congruent triangles.

Now notice that with isoquants convex away from the origin, we must also have AB <

A′B and BE < BC. Putting this all together we get

AB < A′B = BE < BC,

so AB < BC, as we wanted to show.

Notice once again the very general nature of this result: because our choices of output

level, increment in output, and level of the fixed factor all were arbitrary, we can be confident

that these results apply in every region of the technology.

3 Production and Costs

Properties of the production function have their greatest influence on firm behavior through

the impact they have on costs, both short-run and long-run. The very special properties of

constant returns production studied in the previous section have stark implications for firm

costs.

To begin with the short run, recall that when factor prices are fixed, wherever the pro-

duction function displays increasing, decreasing, or constant marginal returns to the variable

factor, the firm will experience decreasing, constant and increasing short-run marginal costs

in the corresponding regions of output. In the typical textbook illustration of this, short-run

marginal cost curve first declines at low levels of output then, at higher levels of output, in

regions of the technology which begin to display diminishing marginal returns, the marginal

cost curve begins to rise.

Though “U-shaped” short-run marginal cost curves may be typical in textbooks, under

constant returns to scale production this is definitely not how we should expect them to

look. Given what we established in Proposition 4, it follows directly that, instead, short-
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run marginal cost will be everywhere upward sloping whenever production displays constant

returns to scale. Illustrated in Figure 5, this is important enough to mention in the form of

a proposition.

Set Figure 5 Here

PROPOSITION 5 Short-run marginal cost is everywhere increasing.

Proof: Suppose capital is fixed in the short run. Then output can increase only if the

amount of labor the firm uses is increased. If the (fixed) wage of labor is w > 0, then short-

run marginal cost at any level of output, defined as the rate of change of short-run total cost

at that level of output, will equal the wage cost of the additional labor necessary to produce

an incremental unit of output. This allows us to write,

SMC =
∆STC

∆Q

= w∆L/∆Q

= w
1

∆Q/∆L

= w/MPL.

Here, the first line is the definition of SMC, the second line follows from our argument

preceding the display, and the third line is a simple re-arrangement of the one preceding it.

Note, however, that the denominator in that third line is the rate of change in output as the

amount of labor is changed, holding capital constant. That, of course, is just the definition

of the marginal product of labor, MPL, so the last line results.

In all of this, we have done nothing more than present the well-known relationship be-

tween short-run marginal cost and the marginal product of labor that holds for any produc-

tion function. But now suppose that production exhibits constant returns to scale. Then

by Proposition 4 the marginal product of labor always diminishes as labor, and output, are
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increased. It is easy to see in the display, above, that SMC must then be always increasing

as output rises.

In the long run, no factor is fixed and the profit-maximizing firm chooses amounts of

both labor and capital to minimize the cost of producing any level of output. The long-run

total cost of output is then simply the cost of the cost-minimizing combination of inputs

capable of producing that given level of output.

Set Figure 6 Here

In the common textbook illustration, the solution to the firm’s cost-minimization problem

is illustrated by the familiar tangency between the relevant isoquant and the lowest isocost

curve the firm can achieve while still producing the level of output in question, as illustrated

in Figure 62. There, all input combinations capable of producing Q units of output lie along

the Q-level isoquant. Facing fixed factor prices w > 0 and r > 0, suppose that all input

combinations costing the firm C0 dollars lie along the isocost curve BA with constant slope

−w/r; and that all input combinations costing C1 > C0 dollars lie along the isocost curve

B′A′, also with constant slope −w/r. Then in Figure 6, the input combination (L0, K0) both

produces output Q and achieves the lowest possible isocost curve, solving the firm’s cost-

minimization problem for output level Q. The cost of that input combination is therefore

the long-run total cost of output Q.

There is a very close relationship, indeed, between scale properties of the technology and

the behavior of long-run average cost (LAC), and students find these relationships quite

intuitive. Under increasing and decreasing returns, the familiar LAC curve will be upward-

sloping and downward-sloping, respectively, while under constant returns to scale the LAC

2When the firm faces fixed factor prices w > 0 and r > 0, the C-dollar isocost curve is the locus of
points in the (L,K) plane satisfying C = wL + rK. Rearranging, this implies that along that isocost curve,
K = (C/r)−(w/r)L. When graphed in the (L,K) plane this will be a straight line with slope −w/r, vertical
intercept C/r and horizontal intercept C/w.
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curve will be everywhere horizontal in the output-cost plane. Since our focus in this paper

is on constant returns, we will content ourselves with establishing only the relation between

constant returns and long run average costs. The cases of increasing and decreasing returns

can be established by adapting (though not by simply mimicking) the proof to be given

below, and we will leave that as a challenge for the interested reader. For now, we have the

following important result.

PROPOSITION 6 Long-run average cost is constant.

Set Figure 7 Here

Proof: Suppose the production function depicted in Figure 7 has constant returns to scale.

There we have identified the unit-isoquant, giving input combinations capable of producing

one unit of output, and we have selected an arbitrary isoquant giving all input combinations

capable of producing an output level of Q units.

Suppose that at factor prices w > 0 and r > 0 the cost of one unit of output is minimized

by the input combination (L1, K1) at point A. We may then express the long-run total cost

(LTC) of one unit of output as

LTC(1) = wL1 + rK1. (4)

To find the input combination that minimizes the cost of Q units of output, we need to

find the point where an isocost curve parallel to the one through A is just tangent to the

Q-level isoquant. According to Proposition 3, isoquants are radially parallel, so points of

equal slope on any two isoquants are always to be found along the same ray from the origin.3

Hence, the input combination (LQ, KQ), along the ray OAB, must minimize the cost of Q.

3Hence, under constant returns, the output expansion path is always a ray from the origin.
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Now recall that, according to Proposition 1, obtaining a Q-fold increase in output by

moving out the same ray requires exactly a Q-fold increase in each factor. Therefore, we

must have LQ = QL1 and KQ = QK1. After some algebra, and using (4), we obtain:

LTC(Q) = wLQ + rKQ

= wQL1 + rQK1

= Q(wL1 + rK1)

= QLTC(1). (5)

Equation (5) tells us that the long-run total cost of any output level will be proportional

to the cost of the very first unit produced: 10 units will cost 10-times as much, 100 units

100-times as much, and so on.

Now long-run average cost is long-run total cost divided by output. Thus, LAC(Q) =

LTC(Q)/Q will be the average cost of Q units of output, and LAC(1) = LTC(1)/1 will be

the average cost of the first unit of output. Dividing both sides of (5) by Q, and substituting

from these definitions, we have:

LAC(Q) = LAC(1).

In other words, the long-run average cost of any output level, Q, is always the same, and is

equal to the cost of the very first unit produced.

Set Figure 8 Here

To better visualize what we have established in Proposition 6, consider the long-run

average cost curve in Figure 8. In the preceding proof, we picked an arbitrary level of

output, Q, and then showed that LAC(Q) = LAC(1), so that the long-run average cost

curve must be horizontal, as depicted in Figure 8.
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In that same figure, notice that the horizontal curve bears the label LAC, for long-run

average cost, and the label LMC for long-run marginal cost. You will recall that, according

to the well-known relationship between averages and marginals, when the average is constant,

the marginal is also constant—and must be equal to the average.4 It therefore follows

immediately from Proposition 6 that under constant returns to scale, long-run marginal

cost, LMC, is constant, too, and is equal to long-run average cost. To help remember the

important connection between LAC and LMC, we shall conclude by recording, without

further proof, this important corollary to the previous proposition.

PROPOSITION 7 Long-run marginal cost is constant and equal to long-run average cost.

4 Conclusion

In this short paper we have used simple geometry to establish several crucial properties of

production and cost under constant returns to scale, both in the short run and in the long

run. All of these results are important, and all bear careful study because the very special

properties of constant returns production are central to so many important results in theory

and the applied fields.

4“Marginals” measure change in their associated “total.” If the average is rising, the margin, or that
being added to the total, must be above the average, pulling the average up; if the average is falling, the
margin must be below the average, pulling the average down. If the average is unchanging, then the margin
must be neither above nor below the average–it must equal the average.

Mathematically, let T (x) be any total measure (e.g. total cost, total product, total profit). Then let M(x)
be the associated marginal measure and A(x) the associated average measure. By definition, M(x) ≡ T ′(x)
and A(x) ≡ T (x)/x, so we can write T (x) ≡ xA(x). Differentiating both sides of this identity with respect
to x (remember to use the chain rule on the rhs), substituting from the definition of M(x), and rearranging
we can express the slope of the average curve at any point, x > 0, as follows:

A′(x) =
M(x)−A(x)

x
.

Note that for any x > 0, A′(x) > 0 (A′(x) < 0) if and only if M(x) > A(x) (M(x) < A(x)). Similarly,
A′(x) = 0 (i.e., the average curve is flat) if and only if M(x) = A(x) (i.e., the marginal and average curves
coincide.)
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Yet even the list of topics we’ve examined here is far from exhaustive—there is more one

can discover about constant returns production. Soper 1967, for example, using little more

geometry than we’ve deployed here, presents a cogent and very accessible geometric proof

of Euler’s Theorem, so central to the famous “product exhaustion theorem” of competitive

economics.

Finally, it should be noted that many of the results presented here in the context of

constant returns production have direct analogies in the theory of consumer demand under

homogeneous (or, indeed, homothetic) utility. By simply reinterpreting, and occasionally

extending, the principles established here, the reader should be able to explore, alone, those

closely related neighborhoods of economic theory.
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